| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template <int Alignment, typename VectorType> |
| void map_class_vector(const VectorType& m) { |
| typedef typename VectorType::Scalar Scalar; |
| |
| Index size = m.size(); |
| |
| VectorType v = VectorType::Random(size); |
| |
| Index arraysize = 3 * size; |
| |
| Scalar* a_array = internal::aligned_new<Scalar>(arraysize + 1); |
| Scalar* array = a_array; |
| if (Alignment != Aligned) |
| array = (Scalar*)(std::intptr_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar |
| ? sizeof(Scalar) |
| : sizeof(typename NumTraits<Scalar>::Real))); |
| |
| { |
| Map<VectorType, Alignment, InnerStride<3> > map(array, size); |
| map = v; |
| for (int i = 0; i < size; ++i) { |
| VERIFY_IS_EQUAL(array[3 * i], v[i]); |
| VERIFY_IS_EQUAL(map[i], v[i]); |
| } |
| } |
| |
| { |
| Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2)); |
| map = v; |
| for (int i = 0; i < size; ++i) { |
| VERIFY_IS_EQUAL(array[2 * i], v[i]); |
| VERIFY_IS_EQUAL(map[i], v[i]); |
| } |
| } |
| |
| internal::aligned_delete(a_array, arraysize + 1); |
| } |
| |
| template <int Alignment, typename MatrixType> |
| void map_class_matrix(const MatrixType& _m) { |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = _m.rows(), cols = _m.cols(); |
| |
| MatrixType m = MatrixType::Random(rows, cols); |
| Scalar s1 = internal::random<Scalar>(); |
| |
| Index arraysize = 4 * (rows + 4) * (cols + 4); |
| |
| Scalar* a_array1 = internal::aligned_new<Scalar>(arraysize + 1); |
| Scalar* array1 = a_array1; |
| if (Alignment != Aligned) |
| array1 = (Scalar*)(std::intptr_t(a_array1) + (internal::packet_traits<Scalar>::AlignedOnScalar |
| ? sizeof(Scalar) |
| : sizeof(typename NumTraits<Scalar>::Real))); |
| |
| Scalar a_array2[256]; |
| Scalar* array2 = a_array2; |
| if (Alignment != Aligned) { |
| array2 = (Scalar*)(std::intptr_t(a_array2) + (internal::packet_traits<Scalar>::AlignedOnScalar |
| ? sizeof(Scalar) |
| : sizeof(typename NumTraits<Scalar>::Real))); |
| } else { |
| // In case there is no alignment, default to pointing to the start. |
| constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1); |
| array2 = (Scalar*)(((std::uintptr_t(a_array2) + alignment - 1) / alignment) * alignment); |
| } |
| Index maxsize2 = a_array2 - array2 + 256; |
| |
| // test no inner stride and some dynamic outer stride |
| for (int k = 0; k < 2; ++k) { |
| if (k == 1 && (m.innerSize() + 1) * m.outerSize() > maxsize2) break; |
| Scalar* array = (k == 0 ? array1 : array2); |
| |
| Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize() + 1)); |
| map = m; |
| VERIFY(map.outerStride() == map.innerSize() + 1); |
| for (int i = 0; i < m.outerSize(); ++i) |
| for (int j = 0; j < m.innerSize(); ++j) { |
| VERIFY_IS_EQUAL(array[map.outerStride() * i + j], m.coeffByOuterInner(i, j)); |
| VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); |
| } |
| VERIFY_IS_APPROX(s1 * map, s1 * m); |
| map *= s1; |
| VERIFY_IS_APPROX(map, s1 * m); |
| } |
| |
| // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices, |
| // this allows to hit the special case where it's vectorizable. |
| for (int k = 0; k < 2; ++k) { |
| if (k == 1 && (m.innerSize() + 4) * m.outerSize() > maxsize2) break; |
| Scalar* array = (k == 0 ? array1 : array2); |
| |
| enum { |
| InnerSize = MatrixType::InnerSizeAtCompileTime, |
| OuterStrideAtCompileTime = InnerSize == Dynamic ? Dynamic : InnerSize + 4 |
| }; |
| Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> > map( |
| array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize() + 4)); |
| map = m; |
| VERIFY(map.outerStride() == map.innerSize() + 4); |
| for (int i = 0; i < m.outerSize(); ++i) |
| for (int j = 0; j < m.innerSize(); ++j) { |
| VERIFY_IS_EQUAL(array[map.outerStride() * i + j], m.coeffByOuterInner(i, j)); |
| VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); |
| } |
| VERIFY_IS_APPROX(s1 * map, s1 * m); |
| map *= s1; |
| VERIFY_IS_APPROX(map, s1 * m); |
| } |
| |
| // test both inner stride and outer stride |
| for (int k = 0; k < 2; ++k) { |
| if (k == 1 && (2 * m.innerSize() + 1) * (m.outerSize() * 2) > maxsize2) break; |
| Scalar* array = (k == 0 ? array1 : array2); |
| |
| Map<MatrixType, Alignment, Stride<Dynamic, Dynamic> > map(array, rows, cols, |
| Stride<Dynamic, Dynamic>(2 * m.innerSize() + 1, 2)); |
| map = m; |
| VERIFY(map.outerStride() == 2 * map.innerSize() + 1); |
| VERIFY(map.innerStride() == 2); |
| for (int i = 0; i < m.outerSize(); ++i) |
| for (int j = 0; j < m.innerSize(); ++j) { |
| VERIFY_IS_EQUAL(array[map.outerStride() * i + map.innerStride() * j], m.coeffByOuterInner(i, j)); |
| VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); |
| } |
| VERIFY_IS_APPROX(s1 * map, s1 * m); |
| map *= s1; |
| VERIFY_IS_APPROX(map, s1 * m); |
| } |
| |
| // test inner stride and no outer stride |
| for (int k = 0; k < 2; ++k) { |
| if (k == 1 && (m.innerSize() * 2) * m.outerSize() > maxsize2) break; |
| Scalar* array = (k == 0 ? array1 : array2); |
| |
| Map<MatrixType, Alignment, InnerStride<Dynamic> > map(array, rows, cols, InnerStride<Dynamic>(2)); |
| map = m; |
| VERIFY(map.outerStride() == map.innerSize() * 2); |
| for (int i = 0; i < m.outerSize(); ++i) |
| for (int j = 0; j < m.innerSize(); ++j) { |
| VERIFY_IS_EQUAL(array[map.innerSize() * i * 2 + j * 2], m.coeffByOuterInner(i, j)); |
| VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); |
| } |
| VERIFY_IS_APPROX(s1 * map, s1 * m); |
| map *= s1; |
| VERIFY_IS_APPROX(map, s1 * m); |
| } |
| |
| // test negative strides |
| { |
| Matrix<Scalar, Dynamic, 1>::Map(a_array1, arraysize + 1).setRandom(); |
| Index outerstride = m.innerSize() + 4; |
| Scalar* array = array1; |
| |
| { |
| Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>(outerstride)); |
| Map<MatrixType, Unaligned, OuterStride<> > map2(array + (m.outerSize() - 1) * outerstride, rows, cols, |
| OuterStride<>(-outerstride)); |
| if (MatrixType::IsRowMajor) |
| VERIFY_IS_APPROX(map1.colwise().reverse(), map2); |
| else |
| VERIFY_IS_APPROX(map1.rowwise().reverse(), map2); |
| } |
| |
| { |
| Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>(outerstride)); |
| Map<MatrixType, Unaligned, Stride<Dynamic, Dynamic> > map2( |
| array + (m.outerSize() - 1) * outerstride + m.innerSize() - 1, rows, cols, |
| Stride<Dynamic, Dynamic>(-outerstride, -1)); |
| VERIFY_IS_APPROX(map1.reverse(), map2); |
| } |
| |
| { |
| Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>(outerstride)); |
| Map<MatrixType, Unaligned, Stride<Dynamic, -1> > map2( |
| array + (m.outerSize() - 1) * outerstride + m.innerSize() - 1, rows, cols, |
| Stride<Dynamic, -1>(-outerstride, -1)); |
| VERIFY_IS_APPROX(map1.reverse(), map2); |
| } |
| } |
| |
| internal::aligned_delete(a_array1, arraysize + 1); |
| } |
| |
| // Additional tests for inner-stride but no outer-stride |
| template <int> |
| void bug1453() { |
| const int data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; |
| typedef Matrix<int, Dynamic, Dynamic, RowMajor> RowMatrixXi; |
| typedef Matrix<int, 2, 3, ColMajor> ColMatrix23i; |
| typedef Matrix<int, 3, 2, ColMajor> ColMatrix32i; |
| typedef Matrix<int, 2, 3, RowMajor> RowMatrix23i; |
| typedef Matrix<int, 3, 2, RowMajor> RowMatrix32i; |
| |
| VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); |
| VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); |
| VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); |
| VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); |
| |
| VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); |
| VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); |
| VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); |
| VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); |
| |
| VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); |
| VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); |
| VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); |
| VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); |
| |
| VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); |
| VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); |
| VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); |
| VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); |
| } |
| |
| EIGEN_DECLARE_TEST(mapstride) { |
| for (int i = 0; i < g_repeat; i++) { |
| int maxn = 3; |
| CALL_SUBTEST_1(map_class_vector<Aligned>(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_1(map_class_vector<Unaligned>(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(map_class_vector<Aligned>(Vector4d())); |
| CALL_SUBTEST_2(map_class_vector<Unaligned>(Vector4d())); |
| CALL_SUBTEST_3(map_class_vector<Aligned>(RowVector4f())); |
| CALL_SUBTEST_3(map_class_vector<Unaligned>(RowVector4f())); |
| CALL_SUBTEST_4(map_class_vector<Aligned>(VectorXcf(internal::random<int>(1, maxn)))); |
| CALL_SUBTEST_4(map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1, maxn)))); |
| CALL_SUBTEST_5(map_class_vector<Aligned>(VectorXi(internal::random<int>(1, maxn)))); |
| CALL_SUBTEST_5(map_class_vector<Unaligned>(VectorXi(internal::random<int>(1, maxn)))); |
| |
| CALL_SUBTEST_1(map_class_matrix<Aligned>(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_1(map_class_matrix<Unaligned>(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(map_class_matrix<Aligned>(Matrix4d())); |
| CALL_SUBTEST_2(map_class_matrix<Unaligned>(Matrix4d())); |
| CALL_SUBTEST_3(map_class_matrix<Aligned>(Matrix<float, 3, 5>())); |
| CALL_SUBTEST_3(map_class_matrix<Unaligned>(Matrix<float, 3, 5>())); |
| CALL_SUBTEST_3(map_class_matrix<Aligned>(Matrix<float, 4, 8>())); |
| CALL_SUBTEST_3(map_class_matrix<Unaligned>(Matrix<float, 4, 8>())); |
| CALL_SUBTEST_4( |
| map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); |
| CALL_SUBTEST_4( |
| map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); |
| CALL_SUBTEST_5(map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); |
| CALL_SUBTEST_5( |
| map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); |
| CALL_SUBTEST_6( |
| map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); |
| CALL_SUBTEST_6( |
| map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); |
| |
| CALL_SUBTEST_5(bug1453<0>()); |
| |
| TEST_SET_BUT_UNUSED_VARIABLE(maxn); |
| } |
| } |