blob: 51ed39872d927c3ca10bb09f107634278c800092 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
#include "sparse.h"
#include <Eigen/SparseQR>
template <typename MatrixType, typename DenseMat>
int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 150) {
eigen_assert(maxRows >= maxCols);
typedef typename MatrixType::Scalar Scalar;
int rows = internal::random<int>(1, maxRows);
int cols = internal::random<int>(1, maxCols);
double density = (std::max)(8. / (rows * cols), 0.01);
A.resize(rows, cols);
dA.resize(rows, cols);
initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
A.makeCompressed();
int nop = internal::random<int>(0, internal::random<double>(0, 1) > 0.5 ? cols / 2 : 0);
for (int k = 0; k < nop; ++k) {
int j0 = internal::random<int>(0, cols - 1);
int j1 = internal::random<int>(0, cols - 1);
Scalar s = internal::random<Scalar>();
A.col(j0) = s * A.col(j1);
dA.col(j0) = s * dA.col(j1);
}
// if(rows<cols) {
// A.conservativeResize(cols,cols);
// dA.conservativeResize(cols,cols);
// dA.bottomRows(cols-rows).setZero();
// }
return rows;
}
template <typename Scalar>
void test_sparseqr_scalar() {
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef SparseMatrix<Scalar, ColMajor> MatrixType;
typedef Matrix<Scalar, Dynamic, Dynamic> DenseMat;
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
MatrixType A;
DenseMat dA;
DenseVector refX, x, b;
SparseQR<MatrixType, COLAMDOrdering<int> > solver;
generate_sparse_rectangular_problem(A, dA);
b = dA * DenseVector::Random(A.cols());
solver.compute(A);
// Q should be MxM
VERIFY_IS_EQUAL(solver.matrixQ().rows(), A.rows());
VERIFY_IS_EQUAL(solver.matrixQ().cols(), A.rows());
// R should be MxN
VERIFY_IS_EQUAL(solver.matrixR().rows(), A.rows());
VERIFY_IS_EQUAL(solver.matrixR().cols(), A.cols());
// Q and R can be multiplied
DenseMat recoveredA = solver.matrixQ() * DenseMat(solver.matrixR().template triangularView<Upper>()) *
solver.colsPermutation().transpose();
VERIFY_IS_EQUAL(recoveredA.rows(), A.rows());
VERIFY_IS_EQUAL(recoveredA.cols(), A.cols());
// and in the full rank case the original matrix is recovered
if (solver.rank() == A.cols()) {
VERIFY_IS_APPROX(A, recoveredA);
}
if (internal::random<float>(0, 1) > 0.5f)
solver.factorize(A); // this checks that calling analyzePattern is not needed if the pattern do not change.
if (solver.info() != Success) {
std::cerr << "sparse QR factorization failed\n";
exit(0);
return;
}
x = solver.solve(b);
if (solver.info() != Success) {
std::cerr << "sparse QR factorization failed\n";
exit(0);
return;
}
// Compare with a dense QR solver
ColPivHouseholderQR<DenseMat> dqr(dA);
refX = dqr.solve(b);
bool rank_deficient = A.cols() > A.rows() || dqr.rank() < A.cols();
if (rank_deficient) {
// rank deficient problem -> we might have to increase the threshold
// to get a correct solution.
RealScalar th =
RealScalar(20) * dA.colwise().norm().maxCoeff() * (A.rows() + A.cols()) * NumTraits<RealScalar>::epsilon();
for (Index k = 0; (k < 16) && !test_isApprox(A * x, b); ++k) {
th *= RealScalar(10);
solver.setPivotThreshold(th);
solver.compute(A);
x = solver.solve(b);
}
}
VERIFY_IS_APPROX(A * x, b);
// For rank deficient problem, the estimated rank might
// be slightly off, so let's only raise a warning in such cases.
if (rank_deficient) ++g_test_level;
VERIFY_IS_EQUAL(solver.rank(), dqr.rank());
if (rank_deficient) --g_test_level;
if (solver.rank() == A.cols()) // full rank
VERIFY_IS_APPROX(x, refX);
// else
// VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
// Compute explicitly the matrix Q
MatrixType Q, QtQ, idM;
Q = solver.matrixQ();
// Check ||Q' * Q - I ||
QtQ = Q * Q.adjoint();
idM.resize(Q.rows(), Q.rows());
idM.setIdentity();
VERIFY(idM.isApprox(QtQ));
// Q to dense
DenseMat dQ;
dQ = solver.matrixQ();
VERIFY_IS_APPROX(Q, dQ);
}
EIGEN_DECLARE_TEST(sparseqr) {
for (int i = 0; i < g_repeat; ++i) {
CALL_SUBTEST_1(test_sparseqr_scalar<double>());
CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >());
}
}