blob: d092e836b1bb6688e63a304db7eb1c23afc73a94 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
template <typename T>
Array<T, 4, 1> four_denorms();
template <>
Array4f four_denorms() {
return Array4f(5.60844e-39f, -5.60844e-39f, 4.94e-44f, -4.94e-44f);
}
template <>
Array4d four_denorms() {
return Array4d(5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324);
}
template <typename T>
Array<T, 4, 1> four_denorms() {
return four_denorms<double>().cast<T>();
}
template <typename MatrixType>
void svd_fill_random(MatrixType &m, int Option = 0) {
using std::pow;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index diagSize = (std::min)(m.rows(), m.cols());
RealScalar s = std::numeric_limits<RealScalar>::max_exponent10 / 4;
s = internal::random<RealScalar>(1, s);
Matrix<RealScalar, Dynamic, 1> d = Matrix<RealScalar, Dynamic, 1>::Random(diagSize);
for (Index k = 0; k < diagSize; ++k) d(k) = d(k) * pow(RealScalar(10), internal::random<RealScalar>(-s, s));
bool dup = internal::random<int>(0, 10) < 3;
bool unit_uv =
internal::random<int>(0, 10) < (dup ? 7 : 3); // if we duplicate some diagonal entries, then increase the chance
// to preserve them using unitary U and V factors
// duplicate some singular values
if (dup) {
Index n = internal::random<Index>(0, d.size() - 1);
for (Index i = 0; i < n; ++i)
d(internal::random<Index>(0, d.size() - 1)) = d(internal::random<Index>(0, d.size() - 1));
}
Matrix<Scalar, Dynamic, Dynamic> U(m.rows(), diagSize);
Matrix<Scalar, Dynamic, Dynamic> VT(diagSize, m.cols());
if (unit_uv) {
// in very rare cases let's try with a pure diagonal matrix
if (internal::random<int>(0, 10) < 1) {
U.setIdentity();
VT.setIdentity();
} else {
createRandomPIMatrixOfRank(diagSize, U.rows(), U.cols(), U);
createRandomPIMatrixOfRank(diagSize, VT.rows(), VT.cols(), VT);
}
} else {
U.setRandom();
VT.setRandom();
}
Matrix<Scalar, Dynamic, 1> samples(9);
samples << Scalar(0), four_denorms<RealScalar>(), -RealScalar(1) / NumTraits<RealScalar>::highest(),
RealScalar(1) / NumTraits<RealScalar>::highest(), (std::numeric_limits<RealScalar>::min)(),
pow((std::numeric_limits<RealScalar>::min)(), RealScalar(0.8));
if (Option == Symmetric) {
m = U * d.asDiagonal() * U.transpose();
// randomly nullify some rows/columns
{
Index count = internal::random<Index>(-diagSize, diagSize);
for (Index k = 0; k < count; ++k) {
Index i = internal::random<Index>(0, diagSize - 1);
m.row(i).setZero();
m.col(i).setZero();
}
if (count < 0)
// (partly) cancel some coeffs
if (!(dup && unit_uv)) {
Index n = internal::random<Index>(0, m.size() - 1);
for (Index k = 0; k < n; ++k) {
Index i = internal::random<Index>(0, m.rows() - 1);
Index j = internal::random<Index>(0, m.cols() - 1);
m(j, i) = m(i, j) = samples(internal::random<Index>(0, samples.size() - 1));
if (NumTraits<Scalar>::IsComplex)
*(&numext::real_ref(m(j, i)) + 1) = *(&numext::real_ref(m(i, j)) + 1) =
samples.real()(internal::random<Index>(0, samples.size() - 1));
}
}
}
} else {
m = U * d.asDiagonal() * VT;
// (partly) cancel some coeffs
if (!(dup && unit_uv)) {
Index n = internal::random<Index>(0, m.size() - 1);
for (Index k = 0; k < n; ++k) {
Index i = internal::random<Index>(0, m.rows() - 1);
Index j = internal::random<Index>(0, m.cols() - 1);
m(i, j) = samples(internal::random<Index>(0, samples.size() - 1));
if (NumTraits<Scalar>::IsComplex)
*(&numext::real_ref(m(i, j)) + 1) = samples.real()(internal::random<Index>(0, samples.size() - 1));
}
}
}
}