| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| template <typename T> |
| Array<T, 4, 1> four_denorms(); |
| |
| template <> |
| Array4f four_denorms() { |
| return Array4f(5.60844e-39f, -5.60844e-39f, 4.94e-44f, -4.94e-44f); |
| } |
| template <> |
| Array4d four_denorms() { |
| return Array4d(5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324); |
| } |
| template <typename T> |
| Array<T, 4, 1> four_denorms() { |
| return four_denorms<double>().cast<T>(); |
| } |
| |
| template <typename MatrixType> |
| void svd_fill_random(MatrixType &m, int Option = 0) { |
| using std::pow; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| Index diagSize = (std::min)(m.rows(), m.cols()); |
| RealScalar s = std::numeric_limits<RealScalar>::max_exponent10 / 4; |
| s = internal::random<RealScalar>(1, s); |
| Matrix<RealScalar, Dynamic, 1> d = Matrix<RealScalar, Dynamic, 1>::Random(diagSize); |
| for (Index k = 0; k < diagSize; ++k) d(k) = d(k) * pow(RealScalar(10), internal::random<RealScalar>(-s, s)); |
| |
| bool dup = internal::random<int>(0, 10) < 3; |
| bool unit_uv = |
| internal::random<int>(0, 10) < (dup ? 7 : 3); // if we duplicate some diagonal entries, then increase the chance |
| // to preserve them using unitary U and V factors |
| |
| // duplicate some singular values |
| if (dup) { |
| Index n = internal::random<Index>(0, d.size() - 1); |
| for (Index i = 0; i < n; ++i) |
| d(internal::random<Index>(0, d.size() - 1)) = d(internal::random<Index>(0, d.size() - 1)); |
| } |
| |
| Matrix<Scalar, Dynamic, Dynamic> U(m.rows(), diagSize); |
| Matrix<Scalar, Dynamic, Dynamic> VT(diagSize, m.cols()); |
| if (unit_uv) { |
| // in very rare cases let's try with a pure diagonal matrix |
| if (internal::random<int>(0, 10) < 1) { |
| U.setIdentity(); |
| VT.setIdentity(); |
| } else { |
| createRandomPIMatrixOfRank(diagSize, U.rows(), U.cols(), U); |
| createRandomPIMatrixOfRank(diagSize, VT.rows(), VT.cols(), VT); |
| } |
| } else { |
| U.setRandom(); |
| VT.setRandom(); |
| } |
| |
| Matrix<Scalar, Dynamic, 1> samples(9); |
| samples << Scalar(0), four_denorms<RealScalar>(), -RealScalar(1) / NumTraits<RealScalar>::highest(), |
| RealScalar(1) / NumTraits<RealScalar>::highest(), (std::numeric_limits<RealScalar>::min)(), |
| pow((std::numeric_limits<RealScalar>::min)(), RealScalar(0.8)); |
| |
| if (Option == Symmetric) { |
| m = U * d.asDiagonal() * U.transpose(); |
| |
| // randomly nullify some rows/columns |
| { |
| Index count = internal::random<Index>(-diagSize, diagSize); |
| for (Index k = 0; k < count; ++k) { |
| Index i = internal::random<Index>(0, diagSize - 1); |
| m.row(i).setZero(); |
| m.col(i).setZero(); |
| } |
| if (count < 0) |
| // (partly) cancel some coeffs |
| if (!(dup && unit_uv)) { |
| Index n = internal::random<Index>(0, m.size() - 1); |
| for (Index k = 0; k < n; ++k) { |
| Index i = internal::random<Index>(0, m.rows() - 1); |
| Index j = internal::random<Index>(0, m.cols() - 1); |
| m(j, i) = m(i, j) = samples(internal::random<Index>(0, samples.size() - 1)); |
| if (NumTraits<Scalar>::IsComplex) |
| *(&numext::real_ref(m(j, i)) + 1) = *(&numext::real_ref(m(i, j)) + 1) = |
| samples.real()(internal::random<Index>(0, samples.size() - 1)); |
| } |
| } |
| } |
| } else { |
| m = U * d.asDiagonal() * VT; |
| // (partly) cancel some coeffs |
| if (!(dup && unit_uv)) { |
| Index n = internal::random<Index>(0, m.size() - 1); |
| for (Index k = 0; k < n; ++k) { |
| Index i = internal::random<Index>(0, m.rows() - 1); |
| Index j = internal::random<Index>(0, m.cols() - 1); |
| m(i, j) = samples(internal::random<Index>(0, samples.size() - 1)); |
| if (NumTraits<Scalar>::IsComplex) |
| *(&numext::real_ref(m(i, j)) + 1) = samples.real()(internal::random<Index>(0, samples.size() - 1)); |
| } |
| } |
| } |
| } |