blob: ce4647f79f1819722e2d7a83ad2bbf0316bed020 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/SVD>
template <typename MatrixType>
void upperbidiag(const MatrixType& m) {
const Index rows = m.rows();
const Index cols = m.cols();
typedef Matrix<typename MatrixType::RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime>
RealMatrixType;
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime>
TransposeMatrixType;
MatrixType a = MatrixType::Random(rows, cols);
internal::UpperBidiagonalization<MatrixType> ubd(a);
RealMatrixType b(rows, cols);
b.setZero();
b.block(0, 0, cols, cols) = ubd.bidiagonal();
MatrixType c = ubd.householderU() * b * ubd.householderV().adjoint();
VERIFY_IS_APPROX(a, c);
TransposeMatrixType d = ubd.householderV() * b.adjoint() * ubd.householderU().adjoint();
VERIFY_IS_APPROX(a.adjoint(), d);
}
EIGEN_DECLARE_TEST(upperbidiagonalization) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(upperbidiag(MatrixXf(3, 3)));
CALL_SUBTEST_2(upperbidiag(MatrixXd(17, 12)));
CALL_SUBTEST_3(upperbidiag(MatrixXcf(20, 20)));
CALL_SUBTEST_4(upperbidiag(Matrix<std::complex<double>, Dynamic, Dynamic, RowMajor>(16, 15)));
CALL_SUBTEST_5(upperbidiag(Matrix<float, 6, 4>()));
CALL_SUBTEST_6(upperbidiag(Matrix<float, 5, 5>()));
CALL_SUBTEST_7(upperbidiag(Matrix<double, 4, 3>()));
}
}