| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| |
| #ifndef EIGEN_COREEVALUATORS_H |
| #define EIGEN_COREEVALUATORS_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // This class returns the evaluator kind from the expression storage kind. |
| // Default assumes index based accessors |
| template<typename StorageKind> |
| struct storage_kind_to_evaluator_kind { |
| typedef IndexBased Kind; |
| }; |
| |
| // This class returns the evaluator shape from the expression storage kind. |
| // It can be Dense, Sparse, Triangular, Diagonal, SelfAdjoint, Band, etc. |
| template<typename StorageKind> struct storage_kind_to_shape; |
| |
| template<> struct storage_kind_to_shape<Dense> { typedef DenseShape Shape; }; |
| template<> struct storage_kind_to_shape<SolverStorage> { typedef SolverShape Shape; }; |
| template<> struct storage_kind_to_shape<PermutationStorage> { typedef PermutationShape Shape; }; |
| template<> struct storage_kind_to_shape<TranspositionsStorage> { typedef TranspositionsShape Shape; }; |
| |
| // Evaluators have to be specialized with respect to various criteria such as: |
| // - storage/structure/shape |
| // - scalar type |
| // - etc. |
| // Therefore, we need specialization of evaluator providing additional template arguments for each kind of evaluators. |
| // We currently distinguish the following kind of evaluators: |
| // - unary_evaluator for expressions taking only one arguments (CwiseUnaryOp, CwiseUnaryView, Transpose, MatrixWrapper, ArrayWrapper, Reverse, Replicate) |
| // - binary_evaluator for expression taking two arguments (CwiseBinaryOp) |
| // - ternary_evaluator for expression taking three arguments (CwiseTernaryOp) |
| // - product_evaluator for linear algebra products (Product); special case of binary_evaluator because it requires additional tags for dispatching. |
| // - mapbase_evaluator for Map, Block, Ref |
| // - block_evaluator for Block (special dispatching to a mapbase_evaluator or unary_evaluator) |
| |
| template< typename T, |
| typename Arg1Kind = typename evaluator_traits<typename T::Arg1>::Kind, |
| typename Arg2Kind = typename evaluator_traits<typename T::Arg2>::Kind, |
| typename Arg3Kind = typename evaluator_traits<typename T::Arg3>::Kind, |
| typename Arg1Scalar = typename traits<typename T::Arg1>::Scalar, |
| typename Arg2Scalar = typename traits<typename T::Arg2>::Scalar, |
| typename Arg3Scalar = typename traits<typename T::Arg3>::Scalar> struct ternary_evaluator; |
| |
| template< typename T, |
| typename LhsKind = typename evaluator_traits<typename T::Lhs>::Kind, |
| typename RhsKind = typename evaluator_traits<typename T::Rhs>::Kind, |
| typename LhsScalar = typename traits<typename T::Lhs>::Scalar, |
| typename RhsScalar = typename traits<typename T::Rhs>::Scalar> struct binary_evaluator; |
| |
| template< typename T, |
| typename Kind = typename evaluator_traits<typename T::NestedExpression>::Kind, |
| typename Scalar = typename T::Scalar> struct unary_evaluator; |
| |
| // evaluator_traits<T> contains traits for evaluator<T> |
| |
| template<typename T> |
| struct evaluator_traits_base |
| { |
| // by default, get evaluator kind and shape from storage |
| typedef typename storage_kind_to_evaluator_kind<typename traits<T>::StorageKind>::Kind Kind; |
| typedef typename storage_kind_to_shape<typename traits<T>::StorageKind>::Shape Shape; |
| }; |
| |
| // Default evaluator traits |
| template<typename T> |
| struct evaluator_traits : public evaluator_traits_base<T> |
| { |
| }; |
| |
| template<typename T, typename Shape = typename evaluator_traits<T>::Shape > |
| struct evaluator_assume_aliasing { |
| static const bool value = false; |
| }; |
| |
| // By default, we assume a unary expression: |
| template<typename T> |
| struct evaluator : public unary_evaluator<T> |
| { |
| typedef unary_evaluator<T> Base; |
| EIGEN_DEVICE_FUNC explicit evaluator(const T& xpr) : Base(xpr) {} |
| }; |
| |
| |
| // TODO: Think about const-correctness |
| template<typename T> |
| struct evaluator<const T> |
| : evaluator<T> |
| { |
| EIGEN_DEVICE_FUNC |
| explicit evaluator(const T& xpr) : evaluator<T>(xpr) {} |
| }; |
| |
| // ---------- base class for all evaluators ---------- |
| |
| template<typename ExpressionType> |
| struct evaluator_base |
| { |
| // TODO that's not very nice to have to propagate all these traits. They are currently only needed to handle outer,inner indices. |
| typedef traits<ExpressionType> ExpressionTraits; |
| |
| enum { |
| Alignment = 0 |
| }; |
| // noncopyable: |
| // Don't make this class inherit noncopyable as this kills EBO (Empty Base Optimization) |
| // and make complex evaluator much larger than then should do. |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE evaluator_base() {} |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ~evaluator_base() {} |
| private: |
| EIGEN_DEVICE_FUNC evaluator_base(const evaluator_base&); |
| EIGEN_DEVICE_FUNC const evaluator_base& operator=(const evaluator_base&); |
| }; |
| |
| // -------------------- Matrix and Array -------------------- |
| // |
| // evaluator<PlainObjectBase> is a common base class for the |
| // Matrix and Array evaluators. |
| // Here we directly specialize evaluator. This is not really a unary expression, and it is, by definition, dense, |
| // so no need for more sophisticated dispatching. |
| |
| // this helper permits to completely eliminate m_outerStride if it is known at compiletime. |
| template<typename Scalar,int OuterStride> class plainobjectbase_evaluator_data { |
| public: |
| EIGEN_DEVICE_FUNC plainobjectbase_evaluator_data(const Scalar* ptr, Index outerStride) : data(ptr) |
| { |
| #ifndef EIGEN_INTERNAL_DEBUGGING |
| EIGEN_UNUSED_VARIABLE(outerStride); |
| #endif |
| eigen_internal_assert(outerStride==OuterStride); |
| } |
| EIGEN_DEVICE_FUNC Index outerStride() const { return OuterStride; } |
| const Scalar *data; |
| }; |
| |
| template<typename Scalar> class plainobjectbase_evaluator_data<Scalar,Dynamic> { |
| public: |
| EIGEN_DEVICE_FUNC plainobjectbase_evaluator_data(const Scalar* ptr, Index outerStride) : data(ptr), m_outerStride(outerStride) {} |
| EIGEN_DEVICE_FUNC Index outerStride() const { return m_outerStride; } |
| const Scalar *data; |
| protected: |
| Index m_outerStride; |
| }; |
| |
| template<typename Derived> |
| struct evaluator<PlainObjectBase<Derived> > |
| : evaluator_base<Derived> |
| { |
| typedef PlainObjectBase<Derived> PlainObjectType; |
| typedef typename PlainObjectType::Scalar Scalar; |
| typedef typename PlainObjectType::CoeffReturnType CoeffReturnType; |
| |
| enum { |
| IsRowMajor = PlainObjectType::IsRowMajor, |
| IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime, |
| RowsAtCompileTime = PlainObjectType::RowsAtCompileTime, |
| ColsAtCompileTime = PlainObjectType::ColsAtCompileTime, |
| |
| CoeffReadCost = NumTraits<Scalar>::ReadCost, |
| Flags = traits<Derived>::EvaluatorFlags, |
| Alignment = traits<Derived>::Alignment |
| }; |
| enum { |
| // We do not need to know the outer stride for vectors |
| OuterStrideAtCompileTime = IsVectorAtCompileTime ? 0 |
| : int(IsRowMajor) ? ColsAtCompileTime |
| : RowsAtCompileTime |
| }; |
| |
| EIGEN_DEVICE_FUNC evaluator() |
| : m_d(0,OuterStrideAtCompileTime) |
| { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const PlainObjectType& m) |
| : m_d(m.data(),IsVectorAtCompileTime ? 0 : m.outerStride()) |
| { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| if (IsRowMajor) |
| return m_d.data[row * m_d.outerStride() + col]; |
| else |
| return m_d.data[row + col * m_d.outerStride()]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| return m_d.data[index]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index row, Index col) |
| { |
| if (IsRowMajor) |
| return const_cast<Scalar*>(m_d.data)[row * m_d.outerStride() + col]; |
| else |
| return const_cast<Scalar*>(m_d.data)[row + col * m_d.outerStride()]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index index) |
| { |
| return const_cast<Scalar*>(m_d.data)[index]; |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index row, Index col) const |
| { |
| if (IsRowMajor) |
| return ploadt<PacketType, LoadMode>(m_d.data + row * m_d.outerStride() + col); |
| else |
| return ploadt<PacketType, LoadMode>(m_d.data + row + col * m_d.outerStride()); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index index) const |
| { |
| return ploadt<PacketType, LoadMode>(m_d.data + index); |
| } |
| |
| template<int StoreMode,typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index row, Index col, const PacketType& x) |
| { |
| if (IsRowMajor) |
| return pstoret<Scalar, PacketType, StoreMode> |
| (const_cast<Scalar*>(m_d.data) + row * m_d.outerStride() + col, x); |
| else |
| return pstoret<Scalar, PacketType, StoreMode> |
| (const_cast<Scalar*>(m_d.data) + row + col * m_d.outerStride(), x); |
| } |
| |
| template<int StoreMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index index, const PacketType& x) |
| { |
| return pstoret<Scalar, PacketType, StoreMode>(const_cast<Scalar*>(m_d.data) + index, x); |
| } |
| |
| protected: |
| |
| plainobjectbase_evaluator_data<Scalar,OuterStrideAtCompileTime> m_d; |
| }; |
| |
| template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| struct evaluator<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > |
| : evaluator<PlainObjectBase<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > > |
| { |
| typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType; |
| |
| EIGEN_DEVICE_FUNC evaluator() {} |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m) |
| : evaluator<PlainObjectBase<XprType> >(m) |
| { } |
| }; |
| |
| template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| struct evaluator<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > |
| : evaluator<PlainObjectBase<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > > |
| { |
| typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType; |
| |
| EIGEN_DEVICE_FUNC evaluator() {} |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m) |
| : evaluator<PlainObjectBase<XprType> >(m) |
| { } |
| }; |
| |
| // -------------------- Transpose -------------------- |
| |
| template<typename ArgType> |
| struct unary_evaluator<Transpose<ArgType>, IndexBased> |
| : evaluator_base<Transpose<ArgType> > |
| { |
| typedef Transpose<ArgType> XprType; |
| |
| enum { |
| CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
| Flags = evaluator<ArgType>::Flags ^ RowMajorBit, |
| Alignment = evaluator<ArgType>::Alignment |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& t) : m_argImpl(t.nestedExpression()) {} |
| |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| return m_argImpl.coeff(col, row); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| return m_argImpl.coeff(index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index row, Index col) |
| { |
| return m_argImpl.coeffRef(col, row); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| typename XprType::Scalar& coeffRef(Index index) |
| { |
| return m_argImpl.coeffRef(index); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index row, Index col) const |
| { |
| return m_argImpl.template packet<LoadMode,PacketType>(col, row); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index index) const |
| { |
| return m_argImpl.template packet<LoadMode,PacketType>(index); |
| } |
| |
| template<int StoreMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index row, Index col, const PacketType& x) |
| { |
| m_argImpl.template writePacket<StoreMode,PacketType>(col, row, x); |
| } |
| |
| template<int StoreMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index index, const PacketType& x) |
| { |
| m_argImpl.template writePacket<StoreMode,PacketType>(index, x); |
| } |
| |
| protected: |
| evaluator<ArgType> m_argImpl; |
| }; |
| |
| // -------------------- CwiseNullaryOp -------------------- |
| // Like Matrix and Array, this is not really a unary expression, so we directly specialize evaluator. |
| // Likewise, there is not need to more sophisticated dispatching here. |
| |
| template<typename Scalar,typename NullaryOp, |
| bool has_nullary = has_nullary_operator<NullaryOp>::value, |
| bool has_unary = has_unary_operator<NullaryOp>::value, |
| bool has_binary = has_binary_operator<NullaryOp>::value> |
| struct nullary_wrapper |
| { |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { return op(i,j); } |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); } |
| |
| template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { return op.template packetOp<T>(i,j); } |
| template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp<T>(i); } |
| }; |
| |
| template<typename Scalar,typename NullaryOp> |
| struct nullary_wrapper<Scalar,NullaryOp,true,false,false> |
| { |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType=0, IndexType=0) const { return op(); } |
| template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType=0, IndexType=0) const { return op.template packetOp<T>(); } |
| }; |
| |
| template<typename Scalar,typename NullaryOp> |
| struct nullary_wrapper<Scalar,NullaryOp,false,false,true> |
| { |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j=0) const { return op(i,j); } |
| template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j=0) const { return op.template packetOp<T>(i,j); } |
| }; |
| |
| // We need the following specialization for vector-only functors assigned to a runtime vector, |
| // for instance, using linspace and assigning a RowVectorXd to a MatrixXd or even a row of a MatrixXd. |
| // In this case, i==0 and j is used for the actual iteration. |
| template<typename Scalar,typename NullaryOp> |
| struct nullary_wrapper<Scalar,NullaryOp,false,true,false> |
| { |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { |
| eigen_assert(i==0 || j==0); |
| return op(i+j); |
| } |
| template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { |
| eigen_assert(i==0 || j==0); |
| return op.template packetOp<T>(i+j); |
| } |
| |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); } |
| template <typename T, typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp<T>(i); } |
| }; |
| |
| template<typename Scalar,typename NullaryOp> |
| struct nullary_wrapper<Scalar,NullaryOp,false,false,false> {}; |
| |
| #if 0 && EIGEN_COMP_MSVC>0 |
| // Disable this ugly workaround. This is now handled in traits<Ref>::match, |
| // but this piece of code might still become handly if some other weird compilation |
| // erros pop up again. |
| |
| // MSVC exhibits a weird compilation error when |
| // compiling: |
| // Eigen::MatrixXf A = MatrixXf::Random(3,3); |
| // Ref<const MatrixXf> R = 2.f*A; |
| // and that has_*ary_operator<scalar_constant_op<float>> have not been instantiated yet. |
| // The "problem" is that evaluator<2.f*A> is instantiated by traits<Ref>::match<2.f*A> |
| // and at that time has_*ary_operator<T> returns true regardless of T. |
| // Then nullary_wrapper is badly instantiated as nullary_wrapper<.,.,true,true,true>. |
| // The trick is thus to defer the proper instantiation of nullary_wrapper when coeff(), |
| // and packet() are really instantiated as implemented below: |
| |
| // This is a simple wrapper around Index to enforce the re-instantiation of |
| // has_*ary_operator when needed. |
| template<typename T> struct nullary_wrapper_workaround_msvc { |
| nullary_wrapper_workaround_msvc(const T&); |
| operator T()const; |
| }; |
| |
| template<typename Scalar,typename NullaryOp> |
| struct nullary_wrapper<Scalar,NullaryOp,true,true,true> |
| { |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { |
| return nullary_wrapper<Scalar,NullaryOp, |
| has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
| has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
| has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().operator()(op,i,j); |
| } |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { |
| return nullary_wrapper<Scalar,NullaryOp, |
| has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
| has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
| has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().operator()(op,i); |
| } |
| |
| template <typename T, typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { |
| return nullary_wrapper<Scalar,NullaryOp, |
| has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
| has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
| has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().template packetOp<T>(op,i,j); |
| } |
| template <typename T, typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { |
| return nullary_wrapper<Scalar,NullaryOp, |
| has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
| has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
| has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().template packetOp<T>(op,i); |
| } |
| }; |
| #endif // MSVC workaround |
| |
| template<typename NullaryOp, typename PlainObjectType> |
| struct evaluator<CwiseNullaryOp<NullaryOp,PlainObjectType> > |
| : evaluator_base<CwiseNullaryOp<NullaryOp,PlainObjectType> > |
| { |
| typedef CwiseNullaryOp<NullaryOp,PlainObjectType> XprType; |
| typedef typename internal::remove_all<PlainObjectType>::type PlainObjectTypeCleaned; |
| |
| enum { |
| CoeffReadCost = internal::functor_traits<NullaryOp>::Cost, |
| |
| Flags = (evaluator<PlainObjectTypeCleaned>::Flags |
| & ( HereditaryBits |
| | (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0) |
| | (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0))) |
| | (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit), |
| Alignment = AlignedMax |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& n) |
| : m_functor(n.functor()), m_wrapper() |
| { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(IndexType row, IndexType col) const |
| { |
| return m_wrapper(m_functor, row, col); |
| } |
| |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(IndexType index) const |
| { |
| return m_wrapper(m_functor,index); |
| } |
| |
| template<int LoadMode, typename PacketType, typename IndexType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(IndexType row, IndexType col) const |
| { |
| return m_wrapper.template packetOp<PacketType>(m_functor, row, col); |
| } |
| |
| template<int LoadMode, typename PacketType, typename IndexType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(IndexType index) const |
| { |
| return m_wrapper.template packetOp<PacketType>(m_functor, index); |
| } |
| |
| protected: |
| const NullaryOp m_functor; |
| const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper; |
| }; |
| |
| // -------------------- CwiseUnaryOp -------------------- |
| |
| template<typename UnaryOp, typename ArgType> |
| struct unary_evaluator<CwiseUnaryOp<UnaryOp, ArgType>, IndexBased > |
| : evaluator_base<CwiseUnaryOp<UnaryOp, ArgType> > |
| { |
| typedef CwiseUnaryOp<UnaryOp, ArgType> XprType; |
| |
| enum { |
| CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost, |
| |
| Flags = evaluator<ArgType>::Flags |
| & (HereditaryBits | LinearAccessBit | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)), |
| Alignment = evaluator<ArgType>::Alignment |
| }; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| explicit unary_evaluator(const XprType& op) : m_d(op) |
| { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost); |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| return m_d.func()(m_d.argImpl.coeff(row, col)); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| return m_d.func()(m_d.argImpl.coeff(index)); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index row, Index col) const |
| { |
| return m_d.func().packetOp(m_d.argImpl.template packet<LoadMode, PacketType>(row, col)); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index index) const |
| { |
| return m_d.func().packetOp(m_d.argImpl.template packet<LoadMode, PacketType>(index)); |
| } |
| |
| protected: |
| |
| // this helper permits to completely eliminate the functor if it is empty |
| class Data : private UnaryOp |
| { |
| public: |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Data(const XprType& xpr) : UnaryOp(xpr.functor()), argImpl(xpr.nestedExpression()) {} |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| const UnaryOp& func() const { return static_cast<const UnaryOp&>(*this); } |
| evaluator<ArgType> argImpl; |
| }; |
| |
| Data m_d; |
| }; |
| |
| // -------------------- CwiseTernaryOp -------------------- |
| |
| // this is a ternary expression |
| template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3> |
| struct evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > |
| : public ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > |
| { |
| typedef CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> XprType; |
| typedef ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > Base; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {} |
| }; |
| |
| template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3> |
| struct ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3>, IndexBased, IndexBased> |
| : evaluator_base<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > |
| { |
| typedef CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> XprType; |
| |
| enum { |
| CoeffReadCost = evaluator<Arg1>::CoeffReadCost + evaluator<Arg2>::CoeffReadCost + evaluator<Arg3>::CoeffReadCost + functor_traits<TernaryOp>::Cost, |
| |
| Arg1Flags = evaluator<Arg1>::Flags, |
| Arg2Flags = evaluator<Arg2>::Flags, |
| Arg3Flags = evaluator<Arg3>::Flags, |
| SameType = is_same<typename Arg1::Scalar,typename Arg2::Scalar>::value && is_same<typename Arg1::Scalar,typename Arg3::Scalar>::value, |
| StorageOrdersAgree = (int(Arg1Flags)&RowMajorBit)==(int(Arg2Flags)&RowMajorBit) && (int(Arg1Flags)&RowMajorBit)==(int(Arg3Flags)&RowMajorBit), |
| Flags0 = (int(Arg1Flags) | int(Arg2Flags) | int(Arg3Flags)) & ( |
| HereditaryBits |
| | (int(Arg1Flags) & int(Arg2Flags) & int(Arg3Flags) & |
| ( (StorageOrdersAgree ? LinearAccessBit : 0) |
| | (functor_traits<TernaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) |
| ) |
| ) |
| ), |
| Flags = (Flags0 & ~RowMajorBit) | (Arg1Flags & RowMajorBit), |
| Alignment = EIGEN_PLAIN_ENUM_MIN( |
| EIGEN_PLAIN_ENUM_MIN(evaluator<Arg1>::Alignment, evaluator<Arg2>::Alignment), |
| evaluator<Arg3>::Alignment) |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit ternary_evaluator(const XprType& xpr) : m_d(xpr) |
| { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<TernaryOp>::Cost); |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| return m_d.func()(m_d.arg1Impl.coeff(row, col), m_d.arg2Impl.coeff(row, col), m_d.arg3Impl.coeff(row, col)); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| return m_d.func()(m_d.arg1Impl.coeff(index), m_d.arg2Impl.coeff(index), m_d.arg3Impl.coeff(index)); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index row, Index col) const |
| { |
| return m_d.func().packetOp(m_d.arg1Impl.template packet<LoadMode,PacketType>(row, col), |
| m_d.arg2Impl.template packet<LoadMode,PacketType>(row, col), |
| m_d.arg3Impl.template packet<LoadMode,PacketType>(row, col)); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index index) const |
| { |
| return m_d.func().packetOp(m_d.arg1Impl.template packet<LoadMode,PacketType>(index), |
| m_d.arg2Impl.template packet<LoadMode,PacketType>(index), |
| m_d.arg3Impl.template packet<LoadMode,PacketType>(index)); |
| } |
| |
| protected: |
| // this helper permits to completely eliminate the functor if it is empty |
| struct Data : private TernaryOp |
| { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Data(const XprType& xpr) : TernaryOp(xpr.functor()), arg1Impl(xpr.arg1()), arg2Impl(xpr.arg2()), arg3Impl(xpr.arg3()) {} |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| const TernaryOp& func() const { return static_cast<const TernaryOp&>(*this); } |
| evaluator<Arg1> arg1Impl; |
| evaluator<Arg2> arg2Impl; |
| evaluator<Arg3> arg3Impl; |
| }; |
| |
| Data m_d; |
| }; |
| |
| // -------------------- CwiseBinaryOp -------------------- |
| |
| // this is a binary expression |
| template<typename BinaryOp, typename Lhs, typename Rhs> |
| struct evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > |
| : public binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > |
| { |
| typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType; |
| typedef binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > Base; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {} |
| }; |
| |
| template<typename BinaryOp, typename Lhs, typename Rhs> |
| struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IndexBased, IndexBased> |
| : evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > |
| { |
| typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType; |
| |
| enum { |
| CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost, |
| |
| LhsFlags = evaluator<Lhs>::Flags, |
| RhsFlags = evaluator<Rhs>::Flags, |
| SameType = is_same<typename Lhs::Scalar,typename Rhs::Scalar>::value, |
| StorageOrdersAgree = (int(LhsFlags)&RowMajorBit)==(int(RhsFlags)&RowMajorBit), |
| Flags0 = (int(LhsFlags) | int(RhsFlags)) & ( |
| HereditaryBits |
| | (int(LhsFlags) & int(RhsFlags) & |
| ( (StorageOrdersAgree ? LinearAccessBit : 0) |
| | (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) |
| ) |
| ) |
| ), |
| Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit), |
| Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<Lhs>::Alignment,evaluator<Rhs>::Alignment) |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit binary_evaluator(const XprType& xpr) : m_d(xpr) |
| { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost); |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| return m_d.func()(m_d.lhsImpl.coeff(row, col), m_d.rhsImpl.coeff(row, col)); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| return m_d.func()(m_d.lhsImpl.coeff(index), m_d.rhsImpl.coeff(index)); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index row, Index col) const |
| { |
| return m_d.func().packetOp(m_d.lhsImpl.template packet<LoadMode,PacketType>(row, col), |
| m_d.rhsImpl.template packet<LoadMode,PacketType>(row, col)); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index index) const |
| { |
| return m_d.func().packetOp(m_d.lhsImpl.template packet<LoadMode,PacketType>(index), |
| m_d.rhsImpl.template packet<LoadMode,PacketType>(index)); |
| } |
| |
| protected: |
| |
| // this helper permits to completely eliminate the functor if it is empty |
| struct Data : private BinaryOp |
| { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Data(const XprType& xpr) : BinaryOp(xpr.functor()), lhsImpl(xpr.lhs()), rhsImpl(xpr.rhs()) {} |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| const BinaryOp& func() const { return static_cast<const BinaryOp&>(*this); } |
| evaluator<Lhs> lhsImpl; |
| evaluator<Rhs> rhsImpl; |
| }; |
| |
| Data m_d; |
| }; |
| |
| // -------------------- CwiseUnaryView -------------------- |
| |
| template<typename UnaryOp, typename ArgType> |
| struct unary_evaluator<CwiseUnaryView<UnaryOp, ArgType>, IndexBased> |
| : evaluator_base<CwiseUnaryView<UnaryOp, ArgType> > |
| { |
| typedef CwiseUnaryView<UnaryOp, ArgType> XprType; |
| |
| enum { |
| CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost, |
| |
| Flags = (evaluator<ArgType>::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit)), |
| |
| Alignment = 0 // FIXME it is not very clear why alignment is necessarily lost... |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) : m_d(op) |
| { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost); |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| return m_d.func()(m_d.argImpl.coeff(row, col)); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| return m_d.func()(m_d.argImpl.coeff(index)); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index row, Index col) |
| { |
| return m_d.func()(m_d.argImpl.coeffRef(row, col)); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index index) |
| { |
| return m_d.func()(m_d.argImpl.coeffRef(index)); |
| } |
| |
| protected: |
| |
| // this helper permits to completely eliminate the functor if it is empty |
| struct Data : private UnaryOp |
| { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Data(const XprType& xpr) : UnaryOp(xpr.functor()), argImpl(xpr.nestedExpression()) {} |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| const UnaryOp& func() const { return static_cast<const UnaryOp&>(*this); } |
| evaluator<ArgType> argImpl; |
| }; |
| |
| Data m_d; |
| }; |
| |
| // -------------------- Map -------------------- |
| |
| // FIXME perhaps the PlainObjectType could be provided by Derived::PlainObject ? |
| // but that might complicate template specialization |
| template<typename Derived, typename PlainObjectType> |
| struct mapbase_evaluator; |
| |
| template<typename Derived, typename PlainObjectType> |
| struct mapbase_evaluator : evaluator_base<Derived> |
| { |
| typedef Derived XprType; |
| typedef typename XprType::PointerType PointerType; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| enum { |
| IsRowMajor = XprType::RowsAtCompileTime, |
| ColsAtCompileTime = XprType::ColsAtCompileTime, |
| CoeffReadCost = NumTraits<Scalar>::ReadCost |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit mapbase_evaluator(const XprType& map) |
| : m_data(const_cast<PointerType>(map.data())), |
| m_innerStride(map.innerStride()), |
| m_outerStride(map.outerStride()) |
| { |
| EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator<Derived>::Flags&PacketAccessBit, internal::inner_stride_at_compile_time<Derived>::ret==1), |
| PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1); |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| return m_data[col * colStride() + row * rowStride()]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| return m_data[index * m_innerStride.value()]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index row, Index col) |
| { |
| return m_data[col * colStride() + row * rowStride()]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index index) |
| { |
| return m_data[index * m_innerStride.value()]; |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index row, Index col) const |
| { |
| PointerType ptr = m_data + row * rowStride() + col * colStride(); |
| return internal::ploadt<PacketType, LoadMode>(ptr); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index index) const |
| { |
| return internal::ploadt<PacketType, LoadMode>(m_data + index * m_innerStride.value()); |
| } |
| |
| template<int StoreMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index row, Index col, const PacketType& x) |
| { |
| PointerType ptr = m_data + row * rowStride() + col * colStride(); |
| return internal::pstoret<Scalar, PacketType, StoreMode>(ptr, x); |
| } |
| |
| template<int StoreMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index index, const PacketType& x) |
| { |
| internal::pstoret<Scalar, PacketType, StoreMode>(m_data + index * m_innerStride.value(), x); |
| } |
| protected: |
| EIGEN_DEVICE_FUNC |
| inline Index rowStride() const { return XprType::IsRowMajor ? m_outerStride.value() : m_innerStride.value(); } |
| EIGEN_DEVICE_FUNC |
| inline Index colStride() const { return XprType::IsRowMajor ? m_innerStride.value() : m_outerStride.value(); } |
| |
| PointerType m_data; |
| const internal::variable_if_dynamic<Index, XprType::InnerStrideAtCompileTime> m_innerStride; |
| const internal::variable_if_dynamic<Index, XprType::OuterStrideAtCompileTime> m_outerStride; |
| }; |
| |
| template<typename PlainObjectType, int MapOptions, typename StrideType> |
| struct evaluator<Map<PlainObjectType, MapOptions, StrideType> > |
| : public mapbase_evaluator<Map<PlainObjectType, MapOptions, StrideType>, PlainObjectType> |
| { |
| typedef Map<PlainObjectType, MapOptions, StrideType> XprType; |
| typedef typename XprType::Scalar Scalar; |
| // TODO: should check for smaller packet types once we can handle multi-sized packet types |
| typedef typename packet_traits<Scalar>::type PacketScalar; |
| |
| enum { |
| InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 |
| ? int(PlainObjectType::InnerStrideAtCompileTime) |
| : int(StrideType::InnerStrideAtCompileTime), |
| OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 |
| ? int(PlainObjectType::OuterStrideAtCompileTime) |
| : int(StrideType::OuterStrideAtCompileTime), |
| HasNoInnerStride = InnerStrideAtCompileTime == 1, |
| HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0, |
| HasNoStride = HasNoInnerStride && HasNoOuterStride, |
| IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic, |
| |
| PacketAccessMask = bool(HasNoInnerStride) ? ~int(0) : ~int(PacketAccessBit), |
| LinearAccessMask = bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime) ? ~int(0) : ~int(LinearAccessBit), |
| Flags = int( evaluator<PlainObjectType>::Flags) & (LinearAccessMask&PacketAccessMask), |
| |
| Alignment = int(MapOptions)&int(AlignedMask) |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& map) |
| : mapbase_evaluator<XprType, PlainObjectType>(map) |
| { } |
| }; |
| |
| // -------------------- Ref -------------------- |
| |
| template<typename PlainObjectType, int RefOptions, typename StrideType> |
| struct evaluator<Ref<PlainObjectType, RefOptions, StrideType> > |
| : public mapbase_evaluator<Ref<PlainObjectType, RefOptions, StrideType>, PlainObjectType> |
| { |
| typedef Ref<PlainObjectType, RefOptions, StrideType> XprType; |
| |
| enum { |
| Flags = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Flags, |
| Alignment = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Alignment |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& ref) |
| : mapbase_evaluator<XprType, PlainObjectType>(ref) |
| { } |
| }; |
| |
| // -------------------- Block -------------------- |
| |
| template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel, |
| bool HasDirectAccess = internal::has_direct_access<ArgType>::ret> struct block_evaluator; |
| |
| template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel> |
| struct evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> > |
| : block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> |
| { |
| typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType; |
| typedef typename XprType::Scalar Scalar; |
| // TODO: should check for smaller packet types once we can handle multi-sized packet types |
| typedef typename packet_traits<Scalar>::type PacketScalar; |
| |
| enum { |
| CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
| |
| RowsAtCompileTime = traits<XprType>::RowsAtCompileTime, |
| ColsAtCompileTime = traits<XprType>::ColsAtCompileTime, |
| MaxRowsAtCompileTime = traits<XprType>::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = traits<XprType>::MaxColsAtCompileTime, |
| |
| ArgTypeIsRowMajor = (int(evaluator<ArgType>::Flags)&RowMajorBit) != 0, |
| IsRowMajor = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? 1 |
| : (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0 |
| : ArgTypeIsRowMajor, |
| HasSameStorageOrderAsArgType = (IsRowMajor == ArgTypeIsRowMajor), |
| InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime), |
| InnerStrideAtCompileTime = HasSameStorageOrderAsArgType |
| ? int(inner_stride_at_compile_time<ArgType>::ret) |
| : int(outer_stride_at_compile_time<ArgType>::ret), |
| OuterStrideAtCompileTime = HasSameStorageOrderAsArgType |
| ? int(outer_stride_at_compile_time<ArgType>::ret) |
| : int(inner_stride_at_compile_time<ArgType>::ret), |
| MaskPacketAccessBit = (InnerStrideAtCompileTime == 1 || HasSameStorageOrderAsArgType) ? PacketAccessBit : 0, |
| |
| FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator<ArgType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0, |
| FlagsRowMajorBit = XprType::Flags&RowMajorBit, |
| Flags0 = evaluator<ArgType>::Flags & ( (HereditaryBits & ~RowMajorBit) | |
| DirectAccessBit | |
| MaskPacketAccessBit), |
| Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit, |
| |
| PacketAlignment = unpacket_traits<PacketScalar>::alignment, |
| Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) |
| && (OuterStrideAtCompileTime!=0) |
| && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0, |
| Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ArgType>::Alignment, Alignment0) |
| }; |
| typedef block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> block_evaluator_type; |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& block) : block_evaluator_type(block) |
| { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| }; |
| |
| // no direct-access => dispatch to a unary evaluator |
| template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel> |
| struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAccess*/ false> |
| : unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> > |
| { |
| typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType; |
| |
| EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block) |
| : unary_evaluator<XprType>(block) |
| {} |
| }; |
| |
| template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel> |
| struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBased> |
| : evaluator_base<Block<ArgType, BlockRows, BlockCols, InnerPanel> > |
| { |
| typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType; |
| |
| EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& block) |
| : m_argImpl(block.nestedExpression()), |
| m_startRow(block.startRow()), |
| m_startCol(block.startCol()), |
| m_linear_offset((InnerPanel|| XprType::IsVectorAtCompileTime)?(XprType::IsRowMajor ? block.startRow()*block.cols() + block.startCol() : block.startCol()*block.rows() + block.startRow()):0) |
| { } |
| |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| enum { |
| RowsAtCompileTime = XprType::RowsAtCompileTime, |
| ForwardLinearAccess = (InnerPanel || XprType::IsVectorAtCompileTime) && bool(evaluator<ArgType>::Flags&LinearAccessBit) |
| }; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| return m_argImpl.coeff(m_startRow.value() + row, m_startCol.value() + col); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| if (ForwardLinearAccess) |
| return m_argImpl.coeff(m_linear_offset.value() + index); |
| else |
| return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index row, Index col) |
| { |
| return m_argImpl.coeffRef(m_startRow.value() + row, m_startCol.value() + col); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index index) |
| { |
| if (ForwardLinearAccess) |
| return m_argImpl.coeffRef(m_linear_offset.value() + index); |
| else |
| return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index row, Index col) const |
| { |
| return m_argImpl.template packet<LoadMode,PacketType>(m_startRow.value() + row, m_startCol.value() + col); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index index) const |
| { |
| if (ForwardLinearAccess) |
| return m_argImpl.template packet<LoadMode,PacketType>(m_linear_offset.value() + index); |
| else |
| return packet<LoadMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index, |
| RowsAtCompileTime == 1 ? index : 0); |
| } |
| |
| template<int StoreMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index row, Index col, const PacketType& x) |
| { |
| return m_argImpl.template writePacket<StoreMode,PacketType>(m_startRow.value() + row, m_startCol.value() + col, x); |
| } |
| |
| template<int StoreMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index index, const PacketType& x) |
| { |
| if (ForwardLinearAccess) |
| return m_argImpl.template writePacket<StoreMode,PacketType>(m_linear_offset.value() + index, x); |
| else |
| return writePacket<StoreMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index, |
| RowsAtCompileTime == 1 ? index : 0, |
| x); |
| } |
| |
| protected: |
| evaluator<ArgType> m_argImpl; |
| const variable_if_dynamic<Index, (ArgType::RowsAtCompileTime == 1 && BlockRows==1) ? 0 : Dynamic> m_startRow; |
| const variable_if_dynamic<Index, (ArgType::ColsAtCompileTime == 1 && BlockCols==1) ? 0 : Dynamic> m_startCol; |
| const variable_if_dynamic<Index, (InnerPanel || XprType::IsVectorAtCompileTime) ? Dynamic : 0> m_linear_offset; |
| }; |
| |
| // TODO: This evaluator does not actually use the child evaluator; |
| // all action is via the data() as returned by the Block expression. |
| |
| template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel> |
| struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /* HasDirectAccess */ true> |
| : mapbase_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, |
| typename Block<ArgType, BlockRows, BlockCols, InnerPanel>::PlainObject> |
| { |
| typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType; |
| typedef typename XprType::Scalar Scalar; |
| |
| EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block) |
| : mapbase_evaluator<XprType, typename XprType::PlainObject>(block) |
| { |
| // TODO: for the 3.3 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime |
| eigen_assert(((internal::UIntPtr(block.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator<XprType>::Alignment)) == 0) && "data is not aligned"); |
| } |
| }; |
| |
| |
| // -------------------- Select -------------------- |
| // NOTE shall we introduce a ternary_evaluator? |
| |
| // TODO enable vectorization for Select |
| template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> |
| struct evaluator<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> > |
| : evaluator_base<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> > |
| { |
| typedef Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> XprType; |
| enum { |
| CoeffReadCost = evaluator<ConditionMatrixType>::CoeffReadCost |
| + EIGEN_PLAIN_ENUM_MAX(evaluator<ThenMatrixType>::CoeffReadCost, |
| evaluator<ElseMatrixType>::CoeffReadCost), |
| |
| Flags = (unsigned int)evaluator<ThenMatrixType>::Flags & evaluator<ElseMatrixType>::Flags & HereditaryBits, |
| |
| Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ThenMatrixType>::Alignment, evaluator<ElseMatrixType>::Alignment) |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& select) |
| : m_conditionImpl(select.conditionMatrix()), |
| m_thenImpl(select.thenMatrix()), |
| m_elseImpl(select.elseMatrix()) |
| { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| if (m_conditionImpl.coeff(row, col)) |
| return m_thenImpl.coeff(row, col); |
| else |
| return m_elseImpl.coeff(row, col); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| if (m_conditionImpl.coeff(index)) |
| return m_thenImpl.coeff(index); |
| else |
| return m_elseImpl.coeff(index); |
| } |
| |
| protected: |
| evaluator<ConditionMatrixType> m_conditionImpl; |
| evaluator<ThenMatrixType> m_thenImpl; |
| evaluator<ElseMatrixType> m_elseImpl; |
| }; |
| |
| |
| // -------------------- Replicate -------------------- |
| |
| template<typename ArgType, int RowFactor, int ColFactor> |
| struct unary_evaluator<Replicate<ArgType, RowFactor, ColFactor> > |
| : evaluator_base<Replicate<ArgType, RowFactor, ColFactor> > |
| { |
| typedef Replicate<ArgType, RowFactor, ColFactor> XprType; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| enum { |
| Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor |
| }; |
| typedef typename internal::nested_eval<ArgType,Factor>::type ArgTypeNested; |
| typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned; |
| |
| enum { |
| CoeffReadCost = evaluator<ArgTypeNestedCleaned>::CoeffReadCost, |
| LinearAccessMask = XprType::IsVectorAtCompileTime ? LinearAccessBit : 0, |
| Flags = (evaluator<ArgTypeNestedCleaned>::Flags & (HereditaryBits|LinearAccessMask) & ~RowMajorBit) | (traits<XprType>::Flags & RowMajorBit), |
| |
| Alignment = evaluator<ArgTypeNestedCleaned>::Alignment |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& replicate) |
| : m_arg(replicate.nestedExpression()), |
| m_argImpl(m_arg), |
| m_rows(replicate.nestedExpression().rows()), |
| m_cols(replicate.nestedExpression().cols()) |
| {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| // try to avoid using modulo; this is a pure optimization strategy |
| const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0 |
| : RowFactor==1 ? row |
| : row % m_rows.value(); |
| const Index actual_col = internal::traits<XprType>::ColsAtCompileTime==1 ? 0 |
| : ColFactor==1 ? col |
| : col % m_cols.value(); |
| |
| return m_argImpl.coeff(actual_row, actual_col); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| // try to avoid using modulo; this is a pure optimization strategy |
| const Index actual_index = internal::traits<XprType>::RowsAtCompileTime==1 |
| ? (ColFactor==1 ? index : index%m_cols.value()) |
| : (RowFactor==1 ? index : index%m_rows.value()); |
| |
| return m_argImpl.coeff(actual_index); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index row, Index col) const |
| { |
| const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0 |
| : RowFactor==1 ? row |
| : row % m_rows.value(); |
| const Index actual_col = internal::traits<XprType>::ColsAtCompileTime==1 ? 0 |
| : ColFactor==1 ? col |
| : col % m_cols.value(); |
| |
| return m_argImpl.template packet<LoadMode,PacketType>(actual_row, actual_col); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index index) const |
| { |
| const Index actual_index = internal::traits<XprType>::RowsAtCompileTime==1 |
| ? (ColFactor==1 ? index : index%m_cols.value()) |
| : (RowFactor==1 ? index : index%m_rows.value()); |
| |
| return m_argImpl.template packet<LoadMode,PacketType>(actual_index); |
| } |
| |
| protected: |
| const ArgTypeNested m_arg; |
| evaluator<ArgTypeNestedCleaned> m_argImpl; |
| const variable_if_dynamic<Index, ArgType::RowsAtCompileTime> m_rows; |
| const variable_if_dynamic<Index, ArgType::ColsAtCompileTime> m_cols; |
| }; |
| |
| |
| // -------------------- PartialReduxExpr -------------------- |
| |
| template< typename ArgType, typename MemberOp, int Direction> |
| struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> > |
| : evaluator_base<PartialReduxExpr<ArgType, MemberOp, Direction> > |
| { |
| typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType; |
| typedef typename internal::nested_eval<ArgType,1>::type ArgTypeNested; |
| typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned; |
| typedef typename ArgType::Scalar InputScalar; |
| typedef typename XprType::Scalar Scalar; |
| enum { |
| TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(ArgType::ColsAtCompileTime) |
| }; |
| typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType; |
| enum { |
| CoeffReadCost = TraversalSize==Dynamic ? HugeCost |
| : TraversalSize * evaluator<ArgType>::CoeffReadCost + int(CostOpType::value), |
| |
| Flags = (traits<XprType>::Flags&RowMajorBit) | (evaluator<ArgType>::Flags&(HereditaryBits&(~RowMajorBit))) | LinearAccessBit, |
| |
| Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType xpr) |
| : m_arg(xpr.nestedExpression()), m_functor(xpr.functor()) |
| { |
| EIGEN_INTERNAL_CHECK_COST_VALUE(TraversalSize==Dynamic ? HugeCost : int(CostOpType::value)); |
| EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
| } |
| |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| const Scalar coeff(Index i, Index j) const |
| { |
| if (Direction==Vertical) |
| return m_functor(m_arg.col(j)); |
| else |
| return m_functor(m_arg.row(i)); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| const Scalar coeff(Index index) const |
| { |
| if (Direction==Vertical) |
| return m_functor(m_arg.col(index)); |
| else |
| return m_functor(m_arg.row(index)); |
| } |
| |
| protected: |
| typename internal::add_const_on_value_type<ArgTypeNested>::type m_arg; |
| const MemberOp m_functor; |
| }; |
| |
| |
| // -------------------- MatrixWrapper and ArrayWrapper -------------------- |
| // |
| // evaluator_wrapper_base<T> is a common base class for the |
| // MatrixWrapper and ArrayWrapper evaluators. |
| |
| template<typename XprType> |
| struct evaluator_wrapper_base |
| : evaluator_base<XprType> |
| { |
| typedef typename remove_all<typename XprType::NestedExpressionType>::type ArgType; |
| enum { |
| CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
| Flags = evaluator<ArgType>::Flags, |
| Alignment = evaluator<ArgType>::Alignment |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator_wrapper_base(const ArgType& arg) : m_argImpl(arg) {} |
| |
| typedef typename ArgType::Scalar Scalar; |
| typedef typename ArgType::CoeffReturnType CoeffReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| return m_argImpl.coeff(row, col); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| return m_argImpl.coeff(index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index row, Index col) |
| { |
| return m_argImpl.coeffRef(row, col); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index index) |
| { |
| return m_argImpl.coeffRef(index); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index row, Index col) const |
| { |
| return m_argImpl.template packet<LoadMode,PacketType>(row, col); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index index) const |
| { |
| return m_argImpl.template packet<LoadMode,PacketType>(index); |
| } |
| |
| template<int StoreMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index row, Index col, const PacketType& x) |
| { |
| m_argImpl.template writePacket<StoreMode>(row, col, x); |
| } |
| |
| template<int StoreMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index index, const PacketType& x) |
| { |
| m_argImpl.template writePacket<StoreMode>(index, x); |
| } |
| |
| protected: |
| evaluator<ArgType> m_argImpl; |
| }; |
| |
| template<typename TArgType> |
| struct unary_evaluator<MatrixWrapper<TArgType> > |
| : evaluator_wrapper_base<MatrixWrapper<TArgType> > |
| { |
| typedef MatrixWrapper<TArgType> XprType; |
| |
| EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper) |
| : evaluator_wrapper_base<MatrixWrapper<TArgType> >(wrapper.nestedExpression()) |
| { } |
| }; |
| |
| template<typename TArgType> |
| struct unary_evaluator<ArrayWrapper<TArgType> > |
| : evaluator_wrapper_base<ArrayWrapper<TArgType> > |
| { |
| typedef ArrayWrapper<TArgType> XprType; |
| |
| EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper) |
| : evaluator_wrapper_base<ArrayWrapper<TArgType> >(wrapper.nestedExpression()) |
| { } |
| }; |
| |
| |
| // -------------------- Reverse -------------------- |
| |
| // defined in Reverse.h: |
| template<typename PacketType, bool ReversePacket> struct reverse_packet_cond; |
| |
| template<typename ArgType, int Direction> |
| struct unary_evaluator<Reverse<ArgType, Direction> > |
| : evaluator_base<Reverse<ArgType, Direction> > |
| { |
| typedef Reverse<ArgType, Direction> XprType; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| enum { |
| IsRowMajor = XprType::IsRowMajor, |
| IsColMajor = !IsRowMajor, |
| ReverseRow = (Direction == Vertical) || (Direction == BothDirections), |
| ReverseCol = (Direction == Horizontal) || (Direction == BothDirections), |
| ReversePacket = (Direction == BothDirections) |
| || ((Direction == Vertical) && IsColMajor) |
| || ((Direction == Horizontal) && IsRowMajor), |
| |
| CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
| |
| // let's enable LinearAccess only with vectorization because of the product overhead |
| // FIXME enable DirectAccess with negative strides? |
| Flags0 = evaluator<ArgType>::Flags, |
| LinearAccess = ( (Direction==BothDirections) && (int(Flags0)&PacketAccessBit) ) |
| || ((ReverseRow && XprType::ColsAtCompileTime==1) || (ReverseCol && XprType::RowsAtCompileTime==1)) |
| ? LinearAccessBit : 0, |
| |
| Flags = int(Flags0) & (HereditaryBits | PacketAccessBit | LinearAccess), |
| |
| Alignment = 0 // FIXME in some rare cases, Alignment could be preserved, like a Vector4f. |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& reverse) |
| : m_argImpl(reverse.nestedExpression()), |
| m_rows(ReverseRow ? reverse.nestedExpression().rows() : 1), |
| m_cols(ReverseCol ? reverse.nestedExpression().cols() : 1) |
| { } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index col) const |
| { |
| return m_argImpl.coeff(ReverseRow ? m_rows.value() - row - 1 : row, |
| ReverseCol ? m_cols.value() - col - 1 : col); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| return m_argImpl.coeff(m_rows.value() * m_cols.value() - index - 1); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index row, Index col) |
| { |
| return m_argImpl.coeffRef(ReverseRow ? m_rows.value() - row - 1 : row, |
| ReverseCol ? m_cols.value() - col - 1 : col); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index index) |
| { |
| return m_argImpl.coeffRef(m_rows.value() * m_cols.value() - index - 1); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index row, Index col) const |
| { |
| enum { |
| PacketSize = unpacket_traits<PacketType>::size, |
| OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, |
| OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1 |
| }; |
| typedef internal::reverse_packet_cond<PacketType,ReversePacket> reverse_packet; |
| return reverse_packet::run(m_argImpl.template packet<LoadMode,PacketType>( |
| ReverseRow ? m_rows.value() - row - OffsetRow : row, |
| ReverseCol ? m_cols.value() - col - OffsetCol : col)); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| PacketType packet(Index index) const |
| { |
| enum { PacketSize = unpacket_traits<PacketType>::size }; |
| return preverse(m_argImpl.template packet<LoadMode,PacketType>(m_rows.value() * m_cols.value() - index - PacketSize)); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index row, Index col, const PacketType& x) |
| { |
| // FIXME we could factorize some code with packet(i,j) |
| enum { |
| PacketSize = unpacket_traits<PacketType>::size, |
| OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, |
| OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1 |
| }; |
| typedef internal::reverse_packet_cond<PacketType,ReversePacket> reverse_packet; |
| m_argImpl.template writePacket<LoadMode>( |
| ReverseRow ? m_rows.value() - row - OffsetRow : row, |
| ReverseCol ? m_cols.value() - col - OffsetCol : col, |
| reverse_packet::run(x)); |
| } |
| |
| template<int LoadMode, typename PacketType> |
| EIGEN_STRONG_INLINE |
| void writePacket(Index index, const PacketType& x) |
| { |
| enum { PacketSize = unpacket_traits<PacketType>::size }; |
| m_argImpl.template writePacket<LoadMode> |
| (m_rows.value() * m_cols.value() - index - PacketSize, preverse(x)); |
| } |
| |
| protected: |
| evaluator<ArgType> m_argImpl; |
| |
| // If we do not reverse rows, then we do not need to know the number of rows; same for columns |
| // Nonetheless, in this case it is important to set to 1 such that the coeff(index) method works fine for vectors. |
| const variable_if_dynamic<Index, ReverseRow ? ArgType::RowsAtCompileTime : 1> m_rows; |
| const variable_if_dynamic<Index, ReverseCol ? ArgType::ColsAtCompileTime : 1> m_cols; |
| }; |
| |
| |
| // -------------------- Diagonal -------------------- |
| |
| template<typename ArgType, int DiagIndex> |
| struct evaluator<Diagonal<ArgType, DiagIndex> > |
| : evaluator_base<Diagonal<ArgType, DiagIndex> > |
| { |
| typedef Diagonal<ArgType, DiagIndex> XprType; |
| |
| enum { |
| CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
| |
| Flags = (unsigned int)(evaluator<ArgType>::Flags & (HereditaryBits | DirectAccessBit) & ~RowMajorBit) | LinearAccessBit, |
| |
| Alignment = 0 |
| }; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& diagonal) |
| : m_argImpl(diagonal.nestedExpression()), |
| m_index(diagonal.index()) |
| { } |
| |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index row, Index) const |
| { |
| return m_argImpl.coeff(row + rowOffset(), row + colOffset()); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| CoeffReturnType coeff(Index index) const |
| { |
| return m_argImpl.coeff(index + rowOffset(), index + colOffset()); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index row, Index) |
| { |
| return m_argImpl.coeffRef(row + rowOffset(), row + colOffset()); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| Scalar& coeffRef(Index index) |
| { |
| return m_argImpl.coeffRef(index + rowOffset(), index + colOffset()); |
| } |
| |
| protected: |
| evaluator<ArgType> m_argImpl; |
| const internal::variable_if_dynamicindex<Index, XprType::DiagIndex> m_index; |
| |
| private: |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value() > 0 ? 0 : -m_index.value(); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; } |
| }; |
| |
| |
| //---------------------------------------------------------------------- |
| // deprecated code |
| //---------------------------------------------------------------------- |
| |
| // -------------------- EvalToTemp -------------------- |
| |
| // expression class for evaluating nested expression to a temporary |
| |
| template<typename ArgType> class EvalToTemp; |
| |
| template<typename ArgType> |
| struct traits<EvalToTemp<ArgType> > |
| : public traits<ArgType> |
| { }; |
| |
| template<typename ArgType> |
| class EvalToTemp |
| : public dense_xpr_base<EvalToTemp<ArgType> >::type |
| { |
| public: |
| |
| typedef typename dense_xpr_base<EvalToTemp>::type Base; |
| EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp) |
| |
| explicit EvalToTemp(const ArgType& arg) |
| : m_arg(arg) |
| { } |
| |
| const ArgType& arg() const |
| { |
| return m_arg; |
| } |
| |
| Index rows() const |
| { |
| return m_arg.rows(); |
| } |
| |
| Index cols() const |
| { |
| return m_arg.cols(); |
| } |
| |
| private: |
| const ArgType& m_arg; |
| }; |
| |
| template<typename ArgType> |
| struct evaluator<EvalToTemp<ArgType> > |
| : public evaluator<typename ArgType::PlainObject> |
| { |
| typedef EvalToTemp<ArgType> XprType; |
| typedef typename ArgType::PlainObject PlainObject; |
| typedef evaluator<PlainObject> Base; |
| |
| EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) |
| : m_result(xpr.arg()) |
| { |
| ::new (static_cast<Base*>(this)) Base(m_result); |
| } |
| |
| // This constructor is used when nesting an EvalTo evaluator in another evaluator |
| EIGEN_DEVICE_FUNC evaluator(const ArgType& arg) |
| : m_result(arg) |
| { |
| ::new (static_cast<Base*>(this)) Base(m_result); |
| } |
| |
| protected: |
| PlainObject m_result; |
| }; |
| |
| } // namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_COREEVALUATORS_H |