blob: c4abc16ff3732c441d75b5b7a6e0a46f821a43da [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_QR_H
#define EIGEN_QR_H
/** \ingroup QR_Module
* \nonstableyet
*
* \class HouseholderQR
*
* \brief Householder QR decomposition of a matrix
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a QR decomposition using Householder transformations. The result is
* stored in a compact way compatible with LAPACK.
*
* Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
* If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
*
* This Householder QR decomposition is faster, but less numerically stable and less feature-full than
* FullPivHouseholderQR or ColPivHouseholderQR.
*
* \sa MatrixBase::householderQr()
*/
template<typename _MatrixType> class HouseholderQR
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, ei_traits<MatrixType>::Flags&RowMajorBit ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
typedef typename ei_plain_diag_type<MatrixType>::type HCoeffsType;
typedef typename ei_plain_row_type<MatrixType>::type RowVectorType;
typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via HouseholderQR::compute(const MatrixType&).
*/
HouseholderQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
HouseholderQR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs(std::min(matrix.rows(),matrix.cols())),
m_isInitialized(false)
{
compute(matrix);
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
* \param b the right-hand-side of the equation to solve.
*
* \returns a solution.
*
* \note The case where b is a matrix is not yet implemented. Also, this
* code is space inefficient.
*
* \note_about_checking_solutions
*
* \note_about_arbitrary_choice_of_solution
*
* Example: \include HouseholderQR_solve.cpp
* Output: \verbinclude HouseholderQR_solve.out
*/
template<typename Rhs>
inline const ei_solve_retval<HouseholderQR, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
return ei_solve_retval<HouseholderQR, Rhs>(*this, b.derived());
}
HouseholderSequenceType householderQ() const
{
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
}
/** \returns a reference to the matrix where the Householder QR decomposition is stored
* in a LAPACK-compatible way.
*/
const MatrixType& matrixQR() const
{
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
return m_qr;
}
HouseholderQR& compute(const MatrixType& matrix);
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar logAbsDeterminant() const;
inline int rows() const { return m_qr.rows(); }
inline int cols() const { return m_qr.cols(); }
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
protected:
MatrixType m_qr;
HCoeffsType m_hCoeffs;
bool m_isInitialized;
};
#ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
{
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return ei_abs(m_qr.diagonal().prod());
}
template<typename MatrixType>
typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
{
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return m_qr.diagonal().cwiseAbs().array().log().sum();
}
template<typename MatrixType>
HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
int rows = matrix.rows();
int cols = matrix.cols();
int size = std::min(rows,cols);
m_qr = matrix;
m_hCoeffs.resize(size);
RowVectorType temp(cols);
for(int k = 0; k < size; ++k)
{
int remainingRows = rows - k;
int remainingCols = cols - k - 1;
RealScalar beta;
m_qr.col(k).tail(remainingRows).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
m_qr.coeffRef(k,k) = beta;
// apply H to remaining part of m_qr from the left
m_qr.corner(BottomRight, remainingRows, remainingCols)
.applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingRows-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1));
}
m_isInitialized = true;
return *this;
}
template<typename _MatrixType, typename Rhs>
struct ei_solve_retval<HouseholderQR<_MatrixType>, Rhs>
: ei_solve_retval_base<HouseholderQR<_MatrixType>, Rhs>
{
EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
const int rows = dec().rows(), cols = dec().cols();
const int rank = std::min(rows, cols);
ei_assert(rhs().rows() == rows);
typename Rhs::PlainObject c(rhs());
// Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
c.applyOnTheLeft(householderSequence(
dec().matrixQR().corner(TopLeft,rows,rank),
dec().hCoeffs().head(rank)).transpose()
);
dec().matrixQR()
.corner(TopLeft, rank, rank)
.template triangularView<Upper>()
.solveInPlace(c.corner(TopLeft, rank, c.cols()));
dst.corner(TopLeft, rank, c.cols()) = c.corner(TopLeft, rank, c.cols());
dst.corner(BottomLeft, cols-rank, c.cols()).setZero();
}
};
#endif // EIGEN_HIDE_HEAVY_CODE
/** \return the Householder QR decomposition of \c *this.
*
* \sa class HouseholderQR
*/
template<typename Derived>
const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::householderQr() const
{
return HouseholderQR<PlainObject>(eval());
}
#endif // EIGEN_QR_H