| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_QR_H |
| #define EIGEN_QR_H |
| |
| /** \ingroup QR_Module |
| * \nonstableyet |
| * |
| * \class HouseholderQR |
| * |
| * \brief Householder QR decomposition of a matrix |
| * |
| * \param MatrixType the type of the matrix of which we are computing the QR decomposition |
| * |
| * This class performs a QR decomposition using Householder transformations. The result is |
| * stored in a compact way compatible with LAPACK. |
| * |
| * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. |
| * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. |
| * |
| * This Householder QR decomposition is faster, but less numerically stable and less feature-full than |
| * FullPivHouseholderQR or ColPivHouseholderQR. |
| * |
| * \sa MatrixBase::householderQr() |
| */ |
| template<typename _MatrixType> class HouseholderQR |
| { |
| public: |
| |
| typedef _MatrixType MatrixType; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, ei_traits<MatrixType>::Flags&RowMajorBit ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; |
| typedef typename ei_plain_diag_type<MatrixType>::type HCoeffsType; |
| typedef typename ei_plain_row_type<MatrixType>::type RowVectorType; |
| typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType; |
| |
| /** |
| * \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via HouseholderQR::compute(const MatrixType&). |
| */ |
| HouseholderQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {} |
| |
| HouseholderQR(const MatrixType& matrix) |
| : m_qr(matrix.rows(), matrix.cols()), |
| m_hCoeffs(std::min(matrix.rows(),matrix.cols())), |
| m_isInitialized(false) |
| { |
| compute(matrix); |
| } |
| |
| /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
| * *this is the QR decomposition, if any exists. |
| * |
| * \param b the right-hand-side of the equation to solve. |
| * |
| * \returns a solution. |
| * |
| * \note The case where b is a matrix is not yet implemented. Also, this |
| * code is space inefficient. |
| * |
| * \note_about_checking_solutions |
| * |
| * \note_about_arbitrary_choice_of_solution |
| * |
| * Example: \include HouseholderQR_solve.cpp |
| * Output: \verbinclude HouseholderQR_solve.out |
| */ |
| template<typename Rhs> |
| inline const ei_solve_retval<HouseholderQR, Rhs> |
| solve(const MatrixBase<Rhs>& b) const |
| { |
| ei_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| return ei_solve_retval<HouseholderQR, Rhs>(*this, b.derived()); |
| } |
| |
| HouseholderSequenceType householderQ() const |
| { |
| ei_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); |
| } |
| |
| /** \returns a reference to the matrix where the Householder QR decomposition is stored |
| * in a LAPACK-compatible way. |
| */ |
| const MatrixType& matrixQR() const |
| { |
| ei_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| return m_qr; |
| } |
| |
| HouseholderQR& compute(const MatrixType& matrix); |
| |
| /** \returns the absolute value of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \warning a determinant can be very big or small, so for matrices |
| * of large enough dimension, there is a risk of overflow/underflow. |
| * One way to work around that is to use logAbsDeterminant() instead. |
| * |
| * \sa logAbsDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::RealScalar absDeterminant() const; |
| |
| /** \returns the natural log of the absolute value of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \note This method is useful to work around the risk of overflow/underflow that's inherent |
| * to determinant computation. |
| * |
| * \sa absDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::RealScalar logAbsDeterminant() const; |
| |
| inline int rows() const { return m_qr.rows(); } |
| inline int cols() const { return m_qr.cols(); } |
| const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
| |
| protected: |
| MatrixType m_qr; |
| HCoeffsType m_hCoeffs; |
| bool m_isInitialized; |
| }; |
| |
| #ifndef EIGEN_HIDE_HEAVY_CODE |
| |
| template<typename MatrixType> |
| typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const |
| { |
| ei_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| return ei_abs(m_qr.diagonal().prod()); |
| } |
| |
| template<typename MatrixType> |
| typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const |
| { |
| ei_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| return m_qr.diagonal().cwiseAbs().array().log().sum(); |
| } |
| |
| template<typename MatrixType> |
| HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix) |
| { |
| int rows = matrix.rows(); |
| int cols = matrix.cols(); |
| int size = std::min(rows,cols); |
| |
| m_qr = matrix; |
| m_hCoeffs.resize(size); |
| |
| RowVectorType temp(cols); |
| |
| for(int k = 0; k < size; ++k) |
| { |
| int remainingRows = rows - k; |
| int remainingCols = cols - k - 1; |
| |
| RealScalar beta; |
| m_qr.col(k).tail(remainingRows).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); |
| m_qr.coeffRef(k,k) = beta; |
| |
| // apply H to remaining part of m_qr from the left |
| m_qr.corner(BottomRight, remainingRows, remainingCols) |
| .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingRows-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1)); |
| } |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| template<typename _MatrixType, typename Rhs> |
| struct ei_solve_retval<HouseholderQR<_MatrixType>, Rhs> |
| : ei_solve_retval_base<HouseholderQR<_MatrixType>, Rhs> |
| { |
| EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| const int rows = dec().rows(), cols = dec().cols(); |
| const int rank = std::min(rows, cols); |
| ei_assert(rhs().rows() == rows); |
| |
| typename Rhs::PlainObject c(rhs()); |
| |
| // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T |
| c.applyOnTheLeft(householderSequence( |
| dec().matrixQR().corner(TopLeft,rows,rank), |
| dec().hCoeffs().head(rank)).transpose() |
| ); |
| |
| dec().matrixQR() |
| .corner(TopLeft, rank, rank) |
| .template triangularView<Upper>() |
| .solveInPlace(c.corner(TopLeft, rank, c.cols())); |
| |
| dst.corner(TopLeft, rank, c.cols()) = c.corner(TopLeft, rank, c.cols()); |
| dst.corner(BottomLeft, cols-rank, c.cols()).setZero(); |
| } |
| }; |
| |
| #endif // EIGEN_HIDE_HEAVY_CODE |
| |
| /** \return the Householder QR decomposition of \c *this. |
| * |
| * \sa class HouseholderQR |
| */ |
| template<typename Derived> |
| const HouseholderQR<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::householderQr() const |
| { |
| return HouseholderQR<PlainObject>(eval()); |
| } |
| |
| |
| #endif // EIGEN_QR_H |