|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #define EIGEN2_SUPPORT | 
|  | #define EIGEN_NO_STATIC_ASSERT | 
|  | #include "main.h" | 
|  | #include <functional> | 
|  |  | 
|  | using namespace std; | 
|  |  | 
|  | template<typename Scalar> struct AddIfNull { | 
|  | const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} | 
|  | enum { Cost = NumTraits<Scalar>::AddCost }; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> void cwiseops(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | m4(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), | 
|  | mones = MatrixType::Ones(rows, cols), | 
|  | identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | 
|  | ::Identity(rows, rows), | 
|  | square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); | 
|  | VectorType v1 = VectorType::Random(rows), | 
|  | v2 = VectorType::Random(rows), | 
|  | vzero = VectorType::Zero(rows), | 
|  | vones = VectorType::Ones(rows), | 
|  | v3(rows); | 
|  |  | 
|  | Index r = ei_random<Index>(0, rows-1), | 
|  | c = ei_random<Index>(0, cols-1); | 
|  |  | 
|  | Scalar s1 = ei_random<Scalar>(); | 
|  |  | 
|  | // test Zero, Ones, Constant, and the set* variants | 
|  | m3 = MatrixType::Constant(rows, cols, s1); | 
|  | for (int j=0; j<cols; ++j) | 
|  | for (int i=0; i<rows; ++i) | 
|  | { | 
|  | VERIFY_IS_APPROX(mzero(i,j), Scalar(0)); | 
|  | VERIFY_IS_APPROX(mones(i,j), Scalar(1)); | 
|  | VERIFY_IS_APPROX(m3(i,j), s1); | 
|  | } | 
|  | VERIFY(mzero.isZero()); | 
|  | VERIFY(mones.isOnes()); | 
|  | VERIFY(m3.isConstant(s1)); | 
|  | VERIFY(identity.isIdentity()); | 
|  | VERIFY_IS_APPROX(m4.setConstant(s1), m3); | 
|  | VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3); | 
|  | VERIFY_IS_APPROX(m4.setZero(), mzero); | 
|  | VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero); | 
|  | VERIFY_IS_APPROX(m4.setOnes(), mones); | 
|  | VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones); | 
|  | m4.fill(s1); | 
|  | VERIFY_IS_APPROX(m4, m3); | 
|  |  | 
|  | VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1)); | 
|  | VERIFY_IS_APPROX(v3.setZero(rows), vzero); | 
|  | VERIFY_IS_APPROX(v3.setOnes(rows), vones); | 
|  |  | 
|  | m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2()); | 
|  | VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); | 
|  | VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1)); | 
|  | VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1)); | 
|  | m3 = m1; m3.cwise() += 1; | 
|  | VERIFY_IS_APPROX(m1 + mones, m3); | 
|  | m3 = m1; m3.cwise() -= 1; | 
|  | VERIFY_IS_APPROX(m1 - mones, m3); | 
|  |  | 
|  | VERIFY_IS_APPROX(m2, m2.cwise() * mones); | 
|  | VERIFY_IS_APPROX(m1.cwise() * m2,  m2.cwise() * m1); | 
|  | m3 = m1; | 
|  | m3.cwise() *= m2; | 
|  | VERIFY_IS_APPROX(m3, m1.cwise() * m2); | 
|  |  | 
|  | VERIFY_IS_APPROX(mones,    m2.cwise()/m2); | 
|  | if(!NumTraits<Scalar>::IsInteger) | 
|  | { | 
|  | VERIFY_IS_APPROX(m1.cwise() / m2,    m1.cwise() * (m2.cwise().inverse())); | 
|  | m3 = m1.cwise().abs().cwise().sqrt(); | 
|  | VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs()); | 
|  | VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs()); | 
|  | VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); | 
|  | m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1); | 
|  | VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse()); | 
|  | m3 = m1.cwise().abs(); | 
|  | VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt()); | 
|  |  | 
|  | //     VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos()); | 
|  | VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square()); | 
|  | m3 = m1; | 
|  | m3.cwise() /= m2; | 
|  | VERIFY_IS_APPROX(m3, m1.cwise() / m2); | 
|  | } | 
|  |  | 
|  | // check min | 
|  | VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) ); | 
|  | VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 ); | 
|  | VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones ); | 
|  |  | 
|  | // check max | 
|  | VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) ); | 
|  | VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 ); | 
|  | VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones ); | 
|  |  | 
|  | VERIFY( (m1.cwise() == m1).all() ); | 
|  | VERIFY( (m1.cwise() != m2).any() ); | 
|  | VERIFY(!(m1.cwise() == (m1+mones)).any() ); | 
|  | if (rows*cols>1) | 
|  | { | 
|  | m3 = m1; | 
|  | m3(r,c) += 1; | 
|  | VERIFY( (m1.cwise() == m3).any() ); | 
|  | VERIFY( !(m1.cwise() == m3).all() ); | 
|  | } | 
|  | VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() ); | 
|  | VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() ); | 
|  | VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() ); | 
|  | VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() ); | 
|  |  | 
|  | VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() ); | 
|  | VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() ); | 
|  | VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() ); | 
|  | } | 
|  |  | 
|  | void test_cwiseop() | 
|  | { | 
|  | for(int i = 0; i < g_repeat ; i++) { | 
|  | CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( cwiseops(Matrix4d()) ); | 
|  | CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) ); | 
|  | CALL_SUBTEST_4( cwiseops(MatrixXf(22, 22)) ); | 
|  | CALL_SUBTEST_5( cwiseops(MatrixXi(8, 12)) ); | 
|  | CALL_SUBTEST_6( cwiseops(MatrixXd(20, 20)) ); | 
|  | } | 
|  | } |