| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/StdVector> | 
 | #include <Eigen/Geometry> | 
 |  | 
 | template<typename MatrixType> | 
 | void check_stdvector_matrix(const MatrixType& m) | 
 | { | 
 |   typename MatrixType::Index rows = m.rows(); | 
 |   typename MatrixType::Index cols = m.cols(); | 
 |   MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols); | 
 |   std::vector<MatrixType,Eigen::aligned_allocator<MatrixType> > v(10, MatrixType(rows,cols)), w(20, y); | 
 |   v[5] = x; | 
 |   w[6] = v[5]; | 
 |   VERIFY_IS_APPROX(w[6], v[5]); | 
 |   v = w; | 
 |   for(int i = 0; i < 20; i++) | 
 |   { | 
 |     VERIFY_IS_APPROX(w[i], v[i]); | 
 |   } | 
 |  | 
 |   v.resize(21); | 
 |   v[20] = x; | 
 |   VERIFY_IS_APPROX(v[20], x); | 
 |   v.resize(22,y); | 
 |   VERIFY_IS_APPROX(v[21], y); | 
 |   v.push_back(x); | 
 |   VERIFY_IS_APPROX(v[22], x); | 
 |   VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(MatrixType)); | 
 |  | 
 |   // do a lot of push_back such that the vector gets internally resized | 
 |   // (with memory reallocation) | 
 |   MatrixType* ref = &w[0]; | 
 |   for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) | 
 |     v.push_back(w[i%w.size()]); | 
 |   for(unsigned int i=23; i<v.size(); ++i) | 
 |   { | 
 |     VERIFY(v[i]==w[(i-23)%w.size()]); | 
 |   } | 
 | } | 
 |  | 
 | template<typename TransformType> | 
 | void check_stdvector_transform(const TransformType&) | 
 | { | 
 |   typedef typename TransformType::MatrixType MatrixType; | 
 |   TransformType x(MatrixType::Random()), y(MatrixType::Random()); | 
 |   std::vector<TransformType,Eigen::aligned_allocator<TransformType> > v(10), w(20, y); | 
 |   v[5] = x; | 
 |   w[6] = v[5]; | 
 |   VERIFY_IS_APPROX(w[6], v[5]); | 
 |   v = w; | 
 |   for(int i = 0; i < 20; i++) | 
 |   { | 
 |     VERIFY_IS_APPROX(w[i], v[i]); | 
 |   } | 
 |  | 
 |   v.resize(21); | 
 |   v[20] = x; | 
 |   VERIFY_IS_APPROX(v[20], x); | 
 |   v.resize(22,y); | 
 |   VERIFY_IS_APPROX(v[21], y); | 
 |   v.push_back(x); | 
 |   VERIFY_IS_APPROX(v[22], x); | 
 |   VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(TransformType)); | 
 |  | 
 |   // do a lot of push_back such that the vector gets internally resized | 
 |   // (with memory reallocation) | 
 |   TransformType* ref = &w[0]; | 
 |   for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) | 
 |     v.push_back(w[i%w.size()]); | 
 |   for(unsigned int i=23; i<v.size(); ++i) | 
 |   { | 
 |     VERIFY(v[i].matrix()==w[(i-23)%w.size()].matrix()); | 
 |   } | 
 | } | 
 |  | 
 | template<typename QuaternionType> | 
 | void check_stdvector_quaternion(const QuaternionType&) | 
 | { | 
 |   typedef typename QuaternionType::Coefficients Coefficients; | 
 |   QuaternionType x(Coefficients::Random()), y(Coefficients::Random()); | 
 |   std::vector<QuaternionType,Eigen::aligned_allocator<QuaternionType> > v(10), w(20, y); | 
 |   v[5] = x; | 
 |   w[6] = v[5]; | 
 |   VERIFY_IS_APPROX(w[6], v[5]); | 
 |   v = w; | 
 |   for(int i = 0; i < 20; i++) | 
 |   { | 
 |     VERIFY_IS_APPROX(w[i], v[i]); | 
 |   } | 
 |  | 
 |   v.resize(21); | 
 |   v[20] = x; | 
 |   VERIFY_IS_APPROX(v[20], x); | 
 |   v.resize(22,y); | 
 |   VERIFY_IS_APPROX(v[21], y); | 
 |   v.push_back(x); | 
 |   VERIFY_IS_APPROX(v[22], x); | 
 |   VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(QuaternionType)); | 
 |  | 
 |   // do a lot of push_back such that the vector gets internally resized | 
 |   // (with memory reallocation) | 
 |   QuaternionType* ref = &w[0]; | 
 |   for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) | 
 |     v.push_back(w[i%w.size()]); | 
 |   for(unsigned int i=23; i<v.size(); ++i) | 
 |   { | 
 |     VERIFY(v[i].coeffs()==w[(i-23)%w.size()].coeffs()); | 
 |   } | 
 | } | 
 |  | 
 | void test_stdvector() | 
 | { | 
 |   // some non vectorizable fixed sizes | 
 |   CALL_SUBTEST_1(check_stdvector_matrix(Vector2f())); | 
 |   CALL_SUBTEST_1(check_stdvector_matrix(Matrix3f())); | 
 |   CALL_SUBTEST_2(check_stdvector_matrix(Matrix3d())); | 
 |  | 
 |   // some vectorizable fixed sizes | 
 |   CALL_SUBTEST_1(check_stdvector_matrix(Matrix2f())); | 
 |   CALL_SUBTEST_1(check_stdvector_matrix(Vector4f())); | 
 |   CALL_SUBTEST_1(check_stdvector_matrix(Matrix4f())); | 
 |   CALL_SUBTEST_2(check_stdvector_matrix(Matrix4d())); | 
 |  | 
 |   // some dynamic sizes | 
 |   CALL_SUBTEST_3(check_stdvector_matrix(MatrixXd(1,1))); | 
 |   CALL_SUBTEST_3(check_stdvector_matrix(VectorXd(20))); | 
 |   CALL_SUBTEST_3(check_stdvector_matrix(RowVectorXf(20))); | 
 |   CALL_SUBTEST_3(check_stdvector_matrix(MatrixXcf(10,10))); | 
 |  | 
 |   // some Transform | 
 |   CALL_SUBTEST_4(check_stdvector_transform(Transform2f())); | 
 |   CALL_SUBTEST_4(check_stdvector_transform(Transform3f())); | 
 |   CALL_SUBTEST_4(check_stdvector_transform(Transform3d())); | 
 |   //CALL_SUBTEST(heck_stdvector_transform(Transform4d())); | 
 |  | 
 |   // some Quaternion | 
 |   CALL_SUBTEST_5(check_stdvector_quaternion(Quaternionf())); | 
 |   CALL_SUBTEST_5(check_stdvector_quaternion(Quaterniond())); | 
 | } |