| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/SVD> | 
 | #include <Eigen/LU> | 
 |  | 
 | template<typename MatrixType> void svd(const MatrixType& m) | 
 | { | 
 |   /* this test covers the following files: | 
 |      SVD.h | 
 |   */ | 
 |   typename MatrixType::Index rows = m.rows(); | 
 |   typename MatrixType::Index cols = m.cols(); | 
 |  | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   MatrixType a = MatrixType::Random(rows,cols); | 
 |   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b = | 
 |     Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1); | 
 |   Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1); | 
 |  | 
 |   { | 
 |     SVD<MatrixType> svd(a); | 
 |     MatrixType sigma = MatrixType::Zero(rows,cols); | 
 |     MatrixType matU  = MatrixType::Zero(rows,rows); | 
 |     sigma.diagonal() = svd.singularValues(); | 
 |     matU = svd.matrixU(); | 
 |     VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose()); | 
 |   } | 
 |  | 
 |  | 
 |   if (rows==cols) | 
 |   { | 
 |     if (ei_is_same_type<RealScalar,float>::ret) | 
 |     { | 
 |       MatrixType a1 = MatrixType::Random(rows,cols); | 
 |       a += a * a.adjoint() + a1 * a1.adjoint(); | 
 |     } | 
 |     SVD<MatrixType> svd(a); | 
 |     x = svd.solve(b); | 
 |     VERIFY_IS_APPROX(a * x,b); | 
 |   } | 
 |  | 
 |  | 
 |   if(rows==cols) | 
 |   { | 
 |     SVD<MatrixType> svd(a); | 
 |     MatrixType unitary, positive; | 
 |     svd.computeUnitaryPositive(&unitary, &positive); | 
 |     VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); | 
 |     VERIFY_IS_APPROX(positive, positive.adjoint()); | 
 |     for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity | 
 |     VERIFY_IS_APPROX(unitary*positive, a); | 
 |  | 
 |     svd.computePositiveUnitary(&positive, &unitary); | 
 |     VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); | 
 |     VERIFY_IS_APPROX(positive, positive.adjoint()); | 
 |     for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity | 
 |     VERIFY_IS_APPROX(positive*unitary, a); | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> void svd_verify_assert() | 
 | { | 
 |   MatrixType tmp; | 
 |  | 
 |   SVD<MatrixType> svd; | 
 |   VERIFY_RAISES_ASSERT(svd.solve(tmp)) | 
 |   VERIFY_RAISES_ASSERT(svd.matrixU()) | 
 |   VERIFY_RAISES_ASSERT(svd.singularValues()) | 
 |   VERIFY_RAISES_ASSERT(svd.matrixV()) | 
 |   VERIFY_RAISES_ASSERT(svd.computeUnitaryPositive(&tmp,&tmp)) | 
 |   VERIFY_RAISES_ASSERT(svd.computePositiveUnitary(&tmp,&tmp)) | 
 |   VERIFY_RAISES_ASSERT(svd.computeRotationScaling(&tmp,&tmp)) | 
 |   VERIFY_RAISES_ASSERT(svd.computeScalingRotation(&tmp,&tmp)) | 
 | } | 
 |  | 
 | void test_svd() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( svd(Matrix3f()) ); | 
 |     CALL_SUBTEST_2( svd(Matrix4d()) ); | 
 |     CALL_SUBTEST_3( svd(MatrixXf(7,7)) ); | 
 |     CALL_SUBTEST_4( svd(MatrixXd(14,7)) ); | 
 |     // complex are not implemented yet | 
 | //     CALL_SUBTEST(svd(MatrixXcd(6,6)) ); | 
 | //     CALL_SUBTEST(svd(MatrixXcf(3,3)) ); | 
 |   } | 
 |  | 
 |   CALL_SUBTEST_1( svd_verify_assert<Matrix3f>() ); | 
 |   CALL_SUBTEST_2( svd_verify_assert<Matrix4d>() ); | 
 |   CALL_SUBTEST_3( svd_verify_assert<MatrixXf>() ); | 
 |   CALL_SUBTEST_4( svd_verify_assert<MatrixXd>() ); | 
 |  | 
 |   // Test problem size constructors | 
 |   CALL_SUBTEST_9( SVD<MatrixXf>(10, 20) ); | 
 | } |