| SUBROUTINE ZTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) |
| * .. Scalar Arguments .. |
| INTEGER INCX,K,LDA,N |
| CHARACTER DIAG,TRANS,UPLO |
| * .. |
| * .. Array Arguments .. |
| DOUBLE COMPLEX A(LDA,*),X(*) |
| * .. |
| * |
| * Purpose |
| * ======= |
| * |
| * ZTBSV solves one of the systems of equations |
| * |
| * A*x = b, or A'*x = b, or conjg( A' )*x = b, |
| * |
| * where b and x are n element vectors and A is an n by n unit, or |
| * non-unit, upper or lower triangular band matrix, with ( k + 1 ) |
| * diagonals. |
| * |
| * No test for singularity or near-singularity is included in this |
| * routine. Such tests must be performed before calling this routine. |
| * |
| * Arguments |
| * ========== |
| * |
| * UPLO - CHARACTER*1. |
| * On entry, UPLO specifies whether the matrix is an upper or |
| * lower triangular matrix as follows: |
| * |
| * UPLO = 'U' or 'u' A is an upper triangular matrix. |
| * |
| * UPLO = 'L' or 'l' A is a lower triangular matrix. |
| * |
| * Unchanged on exit. |
| * |
| * TRANS - CHARACTER*1. |
| * On entry, TRANS specifies the equations to be solved as |
| * follows: |
| * |
| * TRANS = 'N' or 'n' A*x = b. |
| * |
| * TRANS = 'T' or 't' A'*x = b. |
| * |
| * TRANS = 'C' or 'c' conjg( A' )*x = b. |
| * |
| * Unchanged on exit. |
| * |
| * DIAG - CHARACTER*1. |
| * On entry, DIAG specifies whether or not A is unit |
| * triangular as follows: |
| * |
| * DIAG = 'U' or 'u' A is assumed to be unit triangular. |
| * |
| * DIAG = 'N' or 'n' A is not assumed to be unit |
| * triangular. |
| * |
| * Unchanged on exit. |
| * |
| * N - INTEGER. |
| * On entry, N specifies the order of the matrix A. |
| * N must be at least zero. |
| * Unchanged on exit. |
| * |
| * K - INTEGER. |
| * On entry with UPLO = 'U' or 'u', K specifies the number of |
| * super-diagonals of the matrix A. |
| * On entry with UPLO = 'L' or 'l', K specifies the number of |
| * sub-diagonals of the matrix A. |
| * K must satisfy 0 .le. K. |
| * Unchanged on exit. |
| * |
| * A - COMPLEX*16 array of DIMENSION ( LDA, n ). |
| * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) |
| * by n part of the array A must contain the upper triangular |
| * band part of the matrix of coefficients, supplied column by |
| * column, with the leading diagonal of the matrix in row |
| * ( k + 1 ) of the array, the first super-diagonal starting at |
| * position 2 in row k, and so on. The top left k by k triangle |
| * of the array A is not referenced. |
| * The following program segment will transfer an upper |
| * triangular band matrix from conventional full matrix storage |
| * to band storage: |
| * |
| * DO 20, J = 1, N |
| * M = K + 1 - J |
| * DO 10, I = MAX( 1, J - K ), J |
| * A( M + I, J ) = matrix( I, J ) |
| * 10 CONTINUE |
| * 20 CONTINUE |
| * |
| * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) |
| * by n part of the array A must contain the lower triangular |
| * band part of the matrix of coefficients, supplied column by |
| * column, with the leading diagonal of the matrix in row 1 of |
| * the array, the first sub-diagonal starting at position 1 in |
| * row 2, and so on. The bottom right k by k triangle of the |
| * array A is not referenced. |
| * The following program segment will transfer a lower |
| * triangular band matrix from conventional full matrix storage |
| * to band storage: |
| * |
| * DO 20, J = 1, N |
| * M = 1 - J |
| * DO 10, I = J, MIN( N, J + K ) |
| * A( M + I, J ) = matrix( I, J ) |
| * 10 CONTINUE |
| * 20 CONTINUE |
| * |
| * Note that when DIAG = 'U' or 'u' the elements of the array A |
| * corresponding to the diagonal elements of the matrix are not |
| * referenced, but are assumed to be unity. |
| * Unchanged on exit. |
| * |
| * LDA - INTEGER. |
| * On entry, LDA specifies the first dimension of A as declared |
| * in the calling (sub) program. LDA must be at least |
| * ( k + 1 ). |
| * Unchanged on exit. |
| * |
| * X - COMPLEX*16 array of dimension at least |
| * ( 1 + ( n - 1 )*abs( INCX ) ). |
| * Before entry, the incremented array X must contain the n |
| * element right-hand side vector b. On exit, X is overwritten |
| * with the solution vector x. |
| * |
| * INCX - INTEGER. |
| * On entry, INCX specifies the increment for the elements of |
| * X. INCX must not be zero. |
| * Unchanged on exit. |
| * |
| * Further Details |
| * =============== |
| * |
| * Level 2 Blas routine. |
| * |
| * -- Written on 22-October-1986. |
| * Jack Dongarra, Argonne National Lab. |
| * Jeremy Du Croz, Nag Central Office. |
| * Sven Hammarling, Nag Central Office. |
| * Richard Hanson, Sandia National Labs. |
| * |
| * ===================================================================== |
| * |
| * .. Parameters .. |
| DOUBLE COMPLEX ZERO |
| PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
| * .. |
| * .. Local Scalars .. |
| DOUBLE COMPLEX TEMP |
| INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L |
| LOGICAL NOCONJ,NOUNIT |
| * .. |
| * .. External Functions .. |
| LOGICAL LSAME |
| EXTERNAL LSAME |
| * .. |
| * .. External Subroutines .. |
| EXTERNAL XERBLA |
| * .. |
| * .. Intrinsic Functions .. |
| INTRINSIC DCONJG,MAX,MIN |
| * .. |
| * |
| * Test the input parameters. |
| * |
| INFO = 0 |
| IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
| INFO = 1 |
| ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
| + .NOT.LSAME(TRANS,'C')) THEN |
| INFO = 2 |
| ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
| INFO = 3 |
| ELSE IF (N.LT.0) THEN |
| INFO = 4 |
| ELSE IF (K.LT.0) THEN |
| INFO = 5 |
| ELSE IF (LDA.LT. (K+1)) THEN |
| INFO = 7 |
| ELSE IF (INCX.EQ.0) THEN |
| INFO = 9 |
| END IF |
| IF (INFO.NE.0) THEN |
| CALL XERBLA('ZTBSV ',INFO) |
| RETURN |
| END IF |
| * |
| * Quick return if possible. |
| * |
| IF (N.EQ.0) RETURN |
| * |
| NOCONJ = LSAME(TRANS,'T') |
| NOUNIT = LSAME(DIAG,'N') |
| * |
| * Set up the start point in X if the increment is not unity. This |
| * will be ( N - 1 )*INCX too small for descending loops. |
| * |
| IF (INCX.LE.0) THEN |
| KX = 1 - (N-1)*INCX |
| ELSE IF (INCX.NE.1) THEN |
| KX = 1 |
| END IF |
| * |
| * Start the operations. In this version the elements of A are |
| * accessed by sequentially with one pass through A. |
| * |
| IF (LSAME(TRANS,'N')) THEN |
| * |
| * Form x := inv( A )*x. |
| * |
| IF (LSAME(UPLO,'U')) THEN |
| KPLUS1 = K + 1 |
| IF (INCX.EQ.1) THEN |
| DO 20 J = N,1,-1 |
| IF (X(J).NE.ZERO) THEN |
| L = KPLUS1 - J |
| IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) |
| TEMP = X(J) |
| DO 10 I = J - 1,MAX(1,J-K),-1 |
| X(I) = X(I) - TEMP*A(L+I,J) |
| 10 CONTINUE |
| END IF |
| 20 CONTINUE |
| ELSE |
| KX = KX + (N-1)*INCX |
| JX = KX |
| DO 40 J = N,1,-1 |
| KX = KX - INCX |
| IF (X(JX).NE.ZERO) THEN |
| IX = KX |
| L = KPLUS1 - J |
| IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) |
| TEMP = X(JX) |
| DO 30 I = J - 1,MAX(1,J-K),-1 |
| X(IX) = X(IX) - TEMP*A(L+I,J) |
| IX = IX - INCX |
| 30 CONTINUE |
| END IF |
| JX = JX - INCX |
| 40 CONTINUE |
| END IF |
| ELSE |
| IF (INCX.EQ.1) THEN |
| DO 60 J = 1,N |
| IF (X(J).NE.ZERO) THEN |
| L = 1 - J |
| IF (NOUNIT) X(J) = X(J)/A(1,J) |
| TEMP = X(J) |
| DO 50 I = J + 1,MIN(N,J+K) |
| X(I) = X(I) - TEMP*A(L+I,J) |
| 50 CONTINUE |
| END IF |
| 60 CONTINUE |
| ELSE |
| JX = KX |
| DO 80 J = 1,N |
| KX = KX + INCX |
| IF (X(JX).NE.ZERO) THEN |
| IX = KX |
| L = 1 - J |
| IF (NOUNIT) X(JX) = X(JX)/A(1,J) |
| TEMP = X(JX) |
| DO 70 I = J + 1,MIN(N,J+K) |
| X(IX) = X(IX) - TEMP*A(L+I,J) |
| IX = IX + INCX |
| 70 CONTINUE |
| END IF |
| JX = JX + INCX |
| 80 CONTINUE |
| END IF |
| END IF |
| ELSE |
| * |
| * Form x := inv( A' )*x or x := inv( conjg( A') )*x. |
| * |
| IF (LSAME(UPLO,'U')) THEN |
| KPLUS1 = K + 1 |
| IF (INCX.EQ.1) THEN |
| DO 110 J = 1,N |
| TEMP = X(J) |
| L = KPLUS1 - J |
| IF (NOCONJ) THEN |
| DO 90 I = MAX(1,J-K),J - 1 |
| TEMP = TEMP - A(L+I,J)*X(I) |
| 90 CONTINUE |
| IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) |
| ELSE |
| DO 100 I = MAX(1,J-K),J - 1 |
| TEMP = TEMP - DCONJG(A(L+I,J))*X(I) |
| 100 CONTINUE |
| IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J)) |
| END IF |
| X(J) = TEMP |
| 110 CONTINUE |
| ELSE |
| JX = KX |
| DO 140 J = 1,N |
| TEMP = X(JX) |
| IX = KX |
| L = KPLUS1 - J |
| IF (NOCONJ) THEN |
| DO 120 I = MAX(1,J-K),J - 1 |
| TEMP = TEMP - A(L+I,J)*X(IX) |
| IX = IX + INCX |
| 120 CONTINUE |
| IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) |
| ELSE |
| DO 130 I = MAX(1,J-K),J - 1 |
| TEMP = TEMP - DCONJG(A(L+I,J))*X(IX) |
| IX = IX + INCX |
| 130 CONTINUE |
| IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J)) |
| END IF |
| X(JX) = TEMP |
| JX = JX + INCX |
| IF (J.GT.K) KX = KX + INCX |
| 140 CONTINUE |
| END IF |
| ELSE |
| IF (INCX.EQ.1) THEN |
| DO 170 J = N,1,-1 |
| TEMP = X(J) |
| L = 1 - J |
| IF (NOCONJ) THEN |
| DO 150 I = MIN(N,J+K),J + 1,-1 |
| TEMP = TEMP - A(L+I,J)*X(I) |
| 150 CONTINUE |
| IF (NOUNIT) TEMP = TEMP/A(1,J) |
| ELSE |
| DO 160 I = MIN(N,J+K),J + 1,-1 |
| TEMP = TEMP - DCONJG(A(L+I,J))*X(I) |
| 160 CONTINUE |
| IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J)) |
| END IF |
| X(J) = TEMP |
| 170 CONTINUE |
| ELSE |
| KX = KX + (N-1)*INCX |
| JX = KX |
| DO 200 J = N,1,-1 |
| TEMP = X(JX) |
| IX = KX |
| L = 1 - J |
| IF (NOCONJ) THEN |
| DO 180 I = MIN(N,J+K),J + 1,-1 |
| TEMP = TEMP - A(L+I,J)*X(IX) |
| IX = IX - INCX |
| 180 CONTINUE |
| IF (NOUNIT) TEMP = TEMP/A(1,J) |
| ELSE |
| DO 190 I = MIN(N,J+K),J + 1,-1 |
| TEMP = TEMP - DCONJG(A(L+I,J))*X(IX) |
| IX = IX - INCX |
| 190 CONTINUE |
| IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J)) |
| END IF |
| X(JX) = TEMP |
| JX = JX - INCX |
| IF ((N-J).GE.K) KX = KX - INCX |
| 200 CONTINUE |
| END IF |
| END IF |
| END IF |
| * |
| RETURN |
| * |
| * End of ZTBSV . |
| * |
| END |