| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #define EIGEN2_SUPPORT |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void eigen2support(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols); |
| |
| Scalar s1 = internal::random<Scalar>(), |
| s2 = internal::random<Scalar>(); |
| |
| // scalar addition |
| VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise()); |
| VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1); |
| VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) ); |
| m3 = m1; |
| m3.cwise() += s2; |
| VERIFY_IS_APPROX(m3, m1.cwise() + s2); |
| m3 = m1; |
| m3.cwise() -= s1; |
| VERIFY_IS_APPROX(m3, m1.cwise() - s1); |
| |
| VERIFY_IS_EQUAL((m1.corner(TopLeft,1,1)), (m1.block(0,0,1,1))); |
| VERIFY_IS_EQUAL((m1.template corner<1,1>(TopLeft)), (m1.template block<1,1>(0,0))); |
| VERIFY_IS_EQUAL((m1.col(0).start(1)), (m1.col(0).segment(0,1))); |
| VERIFY_IS_EQUAL((m1.col(0).template start<1>()), (m1.col(0).segment(0,1))); |
| VERIFY_IS_EQUAL((m1.col(0).end(1)), (m1.col(0).segment(rows-1,1))); |
| VERIFY_IS_EQUAL((m1.col(0).template end<1>()), (m1.col(0).segment(rows-1,1))); |
| |
| using namespace internal; |
| VERIFY_IS_EQUAL(ei_cos(s1), cos(s1)); |
| VERIFY_IS_EQUAL(ei_real(s1), real(s1)); |
| VERIFY_IS_EQUAL(ei_abs2(s1), abs2(s1)); |
| |
| m1.minor(0,0); |
| } |
| |
| void test_eigen2support() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( eigen2support(Matrix<double,1,1>()) ); |
| CALL_SUBTEST_2( eigen2support(MatrixXd(1,1)) ); |
| CALL_SUBTEST_4( eigen2support(Matrix3f()) ); |
| CALL_SUBTEST_5( eigen2support(Matrix4d()) ); |
| CALL_SUBTEST_2( eigen2support(MatrixXf(200,200)) ); |
| CALL_SUBTEST_6( eigen2support(MatrixXcd(100,100)) ); |
| } |
| } |