| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| template<typename PermutationVectorType> |
| void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size) |
| { |
| typedef typename PermutationVectorType::Index Index; |
| typedef typename PermutationVectorType::Scalar Scalar; |
| v.resize(size); |
| for(Index i = 0; i < size; ++i) v(i) = Scalar(i); |
| if(size == 1) return; |
| for(Index n = 0; n < 3 * size; ++n) |
| { |
| Index i = internal::random<Index>(0, size-1); |
| Index j; |
| do j = internal::random<Index>(0, size-1); while(j==i); |
| std::swap(v(i), v(j)); |
| } |
| } |
| |
| using namespace std; |
| template<typename MatrixType> void permutationmatrices(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options }; |
| typedef PermutationMatrix<Rows> LeftPermutationType; |
| typedef Matrix<int, Rows, 1> LeftPermutationVectorType; |
| typedef Map<LeftPermutationType> MapLeftPerm; |
| typedef PermutationMatrix<Cols> RightPermutationType; |
| typedef Matrix<int, Cols, 1> RightPermutationVectorType; |
| typedef Map<RightPermutationType> MapRightPerm; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m_original = MatrixType::Random(rows,cols); |
| LeftPermutationVectorType lv; |
| randomPermutationVector(lv, rows); |
| LeftPermutationType lp(lv); |
| RightPermutationVectorType rv; |
| randomPermutationVector(rv, cols); |
| RightPermutationType rp(rv); |
| MatrixType m_permuted = lp * m_original * rp; |
| |
| for (int i=0; i<rows; i++) |
| for (int j=0; j<cols; j++) |
| VERIFY_IS_APPROX(m_permuted(lv(i),j), m_original(i,rv(j))); |
| |
| Matrix<Scalar,Rows,Rows> lm(lp); |
| Matrix<Scalar,Cols,Cols> rm(rp); |
| |
| VERIFY_IS_APPROX(m_permuted, lm*m_original*rm); |
| |
| VERIFY_IS_APPROX(lp.inverse()*m_permuted*rp.inverse(), m_original); |
| VERIFY_IS_APPROX(lv.asPermutation().inverse()*m_permuted*rv.asPermutation().inverse(), m_original); |
| VERIFY_IS_APPROX(MapLeftPerm(lv.data(),lv.size()).inverse()*m_permuted*MapRightPerm(rv.data(),rv.size()).inverse(), m_original); |
| |
| VERIFY((lp*lp.inverse()).toDenseMatrix().isIdentity()); |
| VERIFY((lv.asPermutation()*lv.asPermutation().inverse()).toDenseMatrix().isIdentity()); |
| VERIFY((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv.data(),lv.size()).inverse()).toDenseMatrix().isIdentity()); |
| |
| LeftPermutationVectorType lv2; |
| randomPermutationVector(lv2, rows); |
| LeftPermutationType lp2(lv2); |
| Matrix<Scalar,Rows,Rows> lm2(lp2); |
| VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast<Scalar>(), lm*lm2); |
| VERIFY_IS_APPROX((lv.asPermutation()*lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm*lm2); |
| VERIFY_IS_APPROX((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv2.data(),lv2.size())).toDenseMatrix().template cast<Scalar>(), lm*lm2); |
| |
| LeftPermutationType identityp; |
| identityp.setIdentity(rows); |
| VERIFY_IS_APPROX(m_original, identityp*m_original); |
| |
| // check inplace permutations |
| m_permuted = m_original; |
| m_permuted = lp.inverse() * m_permuted; |
| VERIFY_IS_APPROX(m_permuted, lp.inverse()*m_original); |
| |
| m_permuted = m_original; |
| m_permuted = m_permuted * rp.inverse(); |
| VERIFY_IS_APPROX(m_permuted, m_original*rp.inverse()); |
| |
| m_permuted = m_original; |
| m_permuted = lp * m_permuted; |
| VERIFY_IS_APPROX(m_permuted, lp*m_original); |
| |
| m_permuted = m_original; |
| m_permuted = m_permuted * rp; |
| VERIFY_IS_APPROX(m_permuted, m_original*rp); |
| |
| if(rows>1 && cols>1) |
| { |
| lp2 = lp; |
| Index i = internal::random<Index>(0, rows-1); |
| Index j; |
| do j = internal::random<Index>(0, rows-1); while(j==i); |
| lp2.applyTranspositionOnTheLeft(i, j); |
| lm = lp; |
| lm.row(i).swap(lm.row(j)); |
| VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>()); |
| |
| RightPermutationType rp2 = rp; |
| i = internal::random<Index>(0, cols-1); |
| do j = internal::random<Index>(0, cols-1); while(j==i); |
| rp2.applyTranspositionOnTheRight(i, j); |
| rm = rp; |
| rm.col(i).swap(rm.col(j)); |
| VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>()); |
| } |
| } |
| |
| void test_permutationmatrices() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( permutationmatrices(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( permutationmatrices(Matrix3f()) ); |
| CALL_SUBTEST_3( permutationmatrices(Matrix<double,3,3,RowMajor>()) ); |
| CALL_SUBTEST_4( permutationmatrices(Matrix4d()) ); |
| CALL_SUBTEST_5( permutationmatrices(Matrix<double,40,60>()) ); |
| CALL_SUBTEST_6( permutationmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 30)) ); |
| CALL_SUBTEST_7( permutationmatrices(MatrixXcf(15, 10)) ); |
| } |
| } |