| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_TESTSPARSE_H |
| |
| #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET |
| |
| #include "main.h" |
| |
| #if EIGEN_GNUC_AT_LEAST(4,0) && !defined __ICC && !defined(__clang__) |
| #include <tr1/unordered_map> |
| #define EIGEN_UNORDERED_MAP_SUPPORT |
| namespace std { |
| using std::tr1::unordered_map; |
| } |
| #endif |
| |
| #ifdef EIGEN_GOOGLEHASH_SUPPORT |
| #include <google/sparse_hash_map> |
| #endif |
| |
| #include <Eigen/Cholesky> |
| #include <Eigen/LU> |
| #include <Eigen/Sparse> |
| |
| enum { |
| ForceNonZeroDiag = 1, |
| MakeLowerTriangular = 2, |
| MakeUpperTriangular = 4, |
| ForceRealDiag = 8 |
| }; |
| |
| /* Initializes both a sparse and dense matrix with same random values, |
| * and a ratio of \a density non zero entries. |
| * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular |
| * allowing to control the shape of the matrix. |
| * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero, |
| * and zero coefficients respectively. |
| */ |
| template<typename Scalar,int Opt1,int Opt2> void |
| initSparse(double density, |
| Matrix<Scalar,Dynamic,Dynamic,Opt1>& refMat, |
| SparseMatrix<Scalar,Opt2>& sparseMat, |
| int flags = 0, |
| std::vector<Vector2i>* zeroCoords = 0, |
| std::vector<Vector2i>* nonzeroCoords = 0) |
| { |
| enum { IsRowMajor = SparseMatrix<Scalar,Opt2>::IsRowMajor }; |
| sparseMat.setZero(); |
| sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); |
| |
| for(int j=0; j<sparseMat.outerSize(); j++) |
| { |
| sparseMat.startVec(j); |
| for(int i=0; i<sparseMat.innerSize(); i++) |
| { |
| int ai(i), aj(j); |
| if(IsRowMajor) |
| std::swap(ai,aj); |
| Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0); |
| if ((flags&ForceNonZeroDiag) && (i==j)) |
| { |
| v = internal::random<Scalar>()*Scalar(3.); |
| v = v*v + Scalar(5.); |
| } |
| if ((flags & MakeLowerTriangular) && aj>ai) |
| v = Scalar(0); |
| else if ((flags & MakeUpperTriangular) && aj<ai) |
| v = Scalar(0); |
| |
| if ((flags&ForceRealDiag) && (i==j)) |
| v = internal::real(v); |
| |
| if (v!=Scalar(0)) |
| { |
| sparseMat.insertBackByOuterInner(j,i) = v; |
| if (nonzeroCoords) |
| nonzeroCoords->push_back(Vector2i(ai,aj)); |
| } |
| else if (zeroCoords) |
| { |
| zeroCoords->push_back(Vector2i(ai,aj)); |
| } |
| refMat(ai,aj) = v; |
| } |
| } |
| sparseMat.finalize(); |
| } |
| |
| template<typename Scalar,int Opt1,int Opt2> void |
| initSparse(double density, |
| Matrix<Scalar,Dynamic,Dynamic, Opt1>& refMat, |
| DynamicSparseMatrix<Scalar, Opt2>& sparseMat, |
| int flags = 0, |
| std::vector<Vector2i>* zeroCoords = 0, |
| std::vector<Vector2i>* nonzeroCoords = 0) |
| { |
| enum { IsRowMajor = DynamicSparseMatrix<Scalar,Opt2>::IsRowMajor }; |
| sparseMat.setZero(); |
| sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); |
| for(int j=0; j<sparseMat.outerSize(); j++) |
| { |
| sparseMat.startVec(j); // not needed for DynamicSparseMatrix |
| for(int i=0; i<sparseMat.innerSize(); i++) |
| { |
| int ai(i), aj(j); |
| if(IsRowMajor) |
| std::swap(ai,aj); |
| Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0); |
| if ((flags&ForceNonZeroDiag) && (i==j)) |
| { |
| v = internal::random<Scalar>()*Scalar(3.); |
| v = v*v + Scalar(5.); |
| } |
| if ((flags & MakeLowerTriangular) && aj>ai) |
| v = Scalar(0); |
| else if ((flags & MakeUpperTriangular) && aj<ai) |
| v = Scalar(0); |
| |
| if ((flags&ForceRealDiag) && (i==j)) |
| v = internal::real(v); |
| |
| if (v!=Scalar(0)) |
| { |
| sparseMat.insertBackByOuterInner(j,i) = v; |
| if (nonzeroCoords) |
| nonzeroCoords->push_back(Vector2i(ai,aj)); |
| } |
| else if (zeroCoords) |
| { |
| zeroCoords->push_back(Vector2i(ai,aj)); |
| } |
| refMat(ai,aj) = v; |
| } |
| } |
| sparseMat.finalize(); |
| } |
| |
| template<typename Scalar> void |
| initSparse(double density, |
| Matrix<Scalar,Dynamic,1>& refVec, |
| SparseVector<Scalar>& sparseVec, |
| std::vector<int>* zeroCoords = 0, |
| std::vector<int>* nonzeroCoords = 0) |
| { |
| sparseVec.reserve(int(refVec.size()*density)); |
| sparseVec.setZero(); |
| for(int i=0; i<refVec.size(); i++) |
| { |
| Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0); |
| if (v!=Scalar(0)) |
| { |
| sparseVec.insertBack(i) = v; |
| if (nonzeroCoords) |
| nonzeroCoords->push_back(i); |
| } |
| else if (zeroCoords) |
| zeroCoords->push_back(i); |
| refVec[i] = v; |
| } |
| } |
| |
| #endif // EIGEN_TESTSPARSE_H |