| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "sparse.h" |
| |
| template<typename Scalar> void sparse_vector(int rows, int cols) |
| { |
| double densityMat = std::max(8./(rows*cols), 0.01); |
| double densityVec = std::max(8./float(rows), 0.1); |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| typedef SparseVector<Scalar> SparseVectorType; |
| typedef SparseMatrix<Scalar> SparseMatrixType; |
| Scalar eps = 1e-6; |
| |
| SparseMatrixType m1(rows,cols); |
| SparseVectorType v1(rows), v2(rows), v3(rows); |
| DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); |
| DenseVector refV1 = DenseVector::Random(rows), |
| refV2 = DenseVector::Random(rows), |
| refV3 = DenseVector::Random(rows); |
| |
| std::vector<int> zerocoords, nonzerocoords; |
| initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords); |
| initSparse<Scalar>(densityMat, refM1, m1); |
| |
| initSparse<Scalar>(densityVec, refV2, v2); |
| initSparse<Scalar>(densityVec, refV3, v3); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| // test coeff and coeffRef |
| for (unsigned int i=0; i<zerocoords.size(); ++i) |
| { |
| VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps ); |
| //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 ); |
| } |
| { |
| VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); |
| int j=0; |
| for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j) |
| { |
| VERIFY(nonzerocoords[j]==it.index()); |
| VERIFY(it.value()==v1.coeff(it.index())); |
| VERIFY(it.value()==refV1.coeff(it.index())); |
| } |
| } |
| VERIFY_IS_APPROX(v1, refV1); |
| |
| v1.coeffRef(nonzerocoords[0]) = Scalar(5); |
| refV1.coeffRef(nonzerocoords[0]) = Scalar(5); |
| VERIFY_IS_APPROX(v1, refV1); |
| |
| VERIFY_IS_APPROX(v1+v2, refV1+refV2); |
| VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3); |
| |
| VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2); |
| |
| VERIFY_IS_APPROX(v1*=s1, refV1*=s1); |
| VERIFY_IS_APPROX(v1/=s1, refV1/=s1); |
| |
| VERIFY_IS_APPROX(v1+=v2, refV1+=refV2); |
| VERIFY_IS_APPROX(v1-=v2, refV1-=refV2); |
| |
| VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); |
| VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2)); |
| |
| VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm()); |
| |
| } |
| |
| void test_sparse_vector() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( sparse_vector<double>(8, 8) ); |
| CALL_SUBTEST_2( sparse_vector<std::complex<double> >(16, 16) ); |
| CALL_SUBTEST_1( sparse_vector<double>(299, 535) ); |
| } |
| } |
| |