| *> \brief \b SLARFG |
| * |
| * =========== DOCUMENTATION =========== |
| * |
| * Online html documentation available at |
| * http://www.netlib.org/lapack/explore-html/ |
| * |
| *> \htmlonly |
| *> Download SLARFG + dependencies |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfg.f"> |
| *> [TGZ]</a> |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfg.f"> |
| *> [ZIP]</a> |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfg.f"> |
| *> [TXT]</a> |
| *> \endhtmlonly |
| * |
| * Definition: |
| * =========== |
| * |
| * SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU ) |
| * |
| * .. Scalar Arguments .. |
| * INTEGER INCX, N |
| * REAL ALPHA, TAU |
| * .. |
| * .. Array Arguments .. |
| * REAL X( * ) |
| * .. |
| * |
| * |
| *> \par Purpose: |
| * ============= |
| *> |
| *> \verbatim |
| *> |
| *> SLARFG generates a real elementary reflector H of order n, such |
| *> that |
| *> |
| *> H * ( alpha ) = ( beta ), H**T * H = I. |
| *> ( x ) ( 0 ) |
| *> |
| *> where alpha and beta are scalars, and x is an (n-1)-element real |
| *> vector. H is represented in the form |
| *> |
| *> H = I - tau * ( 1 ) * ( 1 v**T ) , |
| *> ( v ) |
| *> |
| *> where tau is a real scalar and v is a real (n-1)-element |
| *> vector. |
| *> |
| *> If the elements of x are all zero, then tau = 0 and H is taken to be |
| *> the unit matrix. |
| *> |
| *> Otherwise 1 <= tau <= 2. |
| *> \endverbatim |
| * |
| * Arguments: |
| * ========== |
| * |
| *> \param[in] N |
| *> \verbatim |
| *> N is INTEGER |
| *> The order of the elementary reflector. |
| *> \endverbatim |
| *> |
| *> \param[in,out] ALPHA |
| *> \verbatim |
| *> ALPHA is REAL |
| *> On entry, the value alpha. |
| *> On exit, it is overwritten with the value beta. |
| *> \endverbatim |
| *> |
| *> \param[in,out] X |
| *> \verbatim |
| *> X is REAL array, dimension |
| *> (1+(N-2)*abs(INCX)) |
| *> On entry, the vector x. |
| *> On exit, it is overwritten with the vector v. |
| *> \endverbatim |
| *> |
| *> \param[in] INCX |
| *> \verbatim |
| *> INCX is INTEGER |
| *> The increment between elements of X. INCX > 0. |
| *> \endverbatim |
| *> |
| *> \param[out] TAU |
| *> \verbatim |
| *> TAU is REAL |
| *> The value tau. |
| *> \endverbatim |
| * |
| * Authors: |
| * ======== |
| * |
| *> \author Univ. of Tennessee |
| *> \author Univ. of California Berkeley |
| *> \author Univ. of Colorado Denver |
| *> \author NAG Ltd. |
| * |
| *> \date November 2011 |
| * |
| *> \ingroup realOTHERauxiliary |
| * |
| * ===================================================================== |
| SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU ) |
| * |
| * -- LAPACK auxiliary routine (version 3.4.0) -- |
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- |
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
| * November 2011 |
| * |
| * .. Scalar Arguments .. |
| INTEGER INCX, N |
| REAL ALPHA, TAU |
| * .. |
| * .. Array Arguments .. |
| REAL X( * ) |
| * .. |
| * |
| * ===================================================================== |
| * |
| * .. Parameters .. |
| REAL ONE, ZERO |
| PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) |
| * .. |
| * .. Local Scalars .. |
| INTEGER J, KNT |
| REAL BETA, RSAFMN, SAFMIN, XNORM |
| * .. |
| * .. External Functions .. |
| REAL SLAMCH, SLAPY2, SNRM2 |
| EXTERNAL SLAMCH, SLAPY2, SNRM2 |
| * .. |
| * .. Intrinsic Functions .. |
| INTRINSIC ABS, SIGN |
| * .. |
| * .. External Subroutines .. |
| EXTERNAL SSCAL |
| * .. |
| * .. Executable Statements .. |
| * |
| IF( N.LE.1 ) THEN |
| TAU = ZERO |
| RETURN |
| END IF |
| * |
| XNORM = SNRM2( N-1, X, INCX ) |
| * |
| IF( XNORM.EQ.ZERO ) THEN |
| * |
| * H = I |
| * |
| TAU = ZERO |
| ELSE |
| * |
| * general case |
| * |
| BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) |
| SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' ) |
| KNT = 0 |
| IF( ABS( BETA ).LT.SAFMIN ) THEN |
| * |
| * XNORM, BETA may be inaccurate; scale X and recompute them |
| * |
| RSAFMN = ONE / SAFMIN |
| 10 CONTINUE |
| KNT = KNT + 1 |
| CALL SSCAL( N-1, RSAFMN, X, INCX ) |
| BETA = BETA*RSAFMN |
| ALPHA = ALPHA*RSAFMN |
| IF( ABS( BETA ).LT.SAFMIN ) |
| $ GO TO 10 |
| * |
| * New BETA is at most 1, at least SAFMIN |
| * |
| XNORM = SNRM2( N-1, X, INCX ) |
| BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) |
| END IF |
| TAU = ( BETA-ALPHA ) / BETA |
| CALL SSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX ) |
| * |
| * If ALPHA is subnormal, it may lose relative accuracy |
| * |
| DO 20 J = 1, KNT |
| BETA = BETA*SAFMIN |
| 20 CONTINUE |
| ALPHA = BETA |
| END IF |
| * |
| RETURN |
| * |
| * End of SLARFG |
| * |
| END |