| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_ROTATION_H |
| #define EIGEN_ROTATION_H |
| |
| // this file aims to contains the various representations of rotation/orientation |
| // in 2D and 3D space excepted Matrix and Quaternion. |
| |
| /** \class ToRotationMatrix |
| * |
| * \brief Template static struct to convert any rotation representation to a matrix form |
| * |
| * \param Scalar the numeric type of the matrix coefficients |
| * \param Dim the dimension of the current space |
| * \param RotationType the input type of the rotation |
| * |
| * This class defines a single static member with the following prototype: |
| * \code |
| * static <MatrixExpression> convert(const RotationType& r); |
| * \endcode |
| * where \c <MatrixExpression> must be a fixed-size matrix expression of size Dim x Dim and |
| * coefficient type Scalar. |
| * |
| * Default specializations are provided for: |
| * - any scalar type (2D), |
| * - any matrix expression, |
| * - Quaternion, |
| * - AngleAxis. |
| * |
| * Currently ToRotationMatrix is only used by Transform. |
| * |
| * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis |
| * |
| */ |
| template<typename Scalar, int Dim, typename RotationType> |
| struct ToRotationMatrix; |
| |
| // 2D rotation to matrix |
| template<typename Scalar, typename OtherScalarType> |
| struct ToRotationMatrix<Scalar, 2, OtherScalarType> |
| { |
| inline static Matrix<Scalar,2,2> convert(const OtherScalarType& r) |
| { return Rotation2D<Scalar>(r).toRotationMatrix(); } |
| }; |
| |
| // 2D rotation to rotation matrix |
| template<typename Scalar, typename OtherScalarType> |
| struct ToRotationMatrix<Scalar, 2, Rotation2D<OtherScalarType> > |
| { |
| inline static Matrix<Scalar,2,2> convert(const Rotation2D<OtherScalarType>& r) |
| { return Rotation2D<Scalar>(r).toRotationMatrix(); } |
| }; |
| |
| // quaternion to rotation matrix |
| template<typename Scalar, typename OtherScalarType> |
| struct ToRotationMatrix<Scalar, 3, Quaternion<OtherScalarType> > |
| { |
| inline static Matrix<Scalar,3,3> convert(const Quaternion<OtherScalarType>& q) |
| { return q.toRotationMatrix(); } |
| }; |
| |
| // angle axis to rotation matrix |
| template<typename Scalar, typename OtherScalarType> |
| struct ToRotationMatrix<Scalar, 3, AngleAxis<OtherScalarType> > |
| { |
| inline static Matrix<Scalar,3,3> convert(const AngleAxis<OtherScalarType>& aa) |
| { return aa.toRotationMatrix(); } |
| }; |
| |
| // euler angles to rotation matrix |
| template<typename Scalar, typename OtherScalarType> |
| struct ToRotationMatrix<Scalar, 3, EulerAngles<OtherScalarType> > |
| { |
| inline static Matrix<Scalar,3,3> convert(const EulerAngles<OtherScalarType>& ea) |
| { return ea.toRotationMatrix(); } |
| }; |
| |
| // matrix xpr to matrix xpr |
| template<typename Scalar, int Dim, typename OtherDerived> |
| struct ToRotationMatrix<Scalar, Dim, MatrixBase<OtherDerived> > |
| { |
| inline static const MatrixBase<OtherDerived>& convert(const MatrixBase<OtherDerived>& mat) |
| { |
| EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim, |
| you_did_a_programming_error); |
| return mat; |
| } |
| }; |
| |
| /** \class Rotation2D |
| * |
| * \brief Represents a rotation/orientation in a 2 dimensional space. |
| * |
| * \param _Scalar the scalar type, i.e., the type of the coefficients |
| * |
| * This class is equivalent to a single scalar representing the rotation angle |
| * in radian with some additional features such as the conversion from/to |
| * rotation matrix. Moreover this class aims to provide a similar interface |
| * to Quaternion in order to facilitate the writing of generic algorithm |
| * dealing with rotations. |
| * |
| * \sa class Quaternion, class Transform |
| */ |
| template<typename _Scalar> |
| class Rotation2D |
| { |
| public: |
| enum { Dim = 2 }; |
| /** the scalar type of the coefficients */ |
| typedef _Scalar Scalar; |
| typedef Matrix<Scalar,2,2> Matrix2; |
| |
| protected: |
| |
| Scalar m_angle; |
| |
| public: |
| |
| inline Rotation2D(Scalar a) : m_angle(a) {} |
| inline operator Scalar& () { return m_angle; } |
| inline operator Scalar () const { return m_angle; } |
| |
| template<typename Derived> |
| Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); |
| Matrix2 toRotationMatrix(void) const; |
| |
| /** \returns the spherical interpolation between \c *this and \a other using |
| * parameter \a t. It is equivalent to a linear interpolation. |
| */ |
| inline Rotation2D slerp(Scalar t, const Rotation2D& other) const |
| { return m_angle * (1-t) + t * other; } |
| }; |
| |
| /** Set \c *this from a 2x2 rotation matrix \a mat. |
| * In other words, this function extract the rotation angle |
| * from the rotation matrix. |
| */ |
| template<typename Scalar> |
| template<typename Derived> |
| Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) |
| { |
| EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,you_did_a_programming_error); |
| m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0)); |
| return *this; |
| } |
| |
| /** Constructs and \returns an equivalent 2x2 rotation matrix. |
| */ |
| template<typename Scalar> |
| typename Rotation2D<Scalar>::Matrix2 |
| Rotation2D<Scalar>::toRotationMatrix(void) const |
| { |
| Scalar sinA = ei_sin(m_angle); |
| Scalar cosA = ei_cos(m_angle); |
| return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); |
| } |
| |
| #endif // EIGEN_ROTATION_H |