| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_MATRIX_H |
| #define EIGEN_MATRIX_H |
| |
| |
| /** \class Matrix |
| * |
| * \brief The matrix class, also used for vectors and row-vectors |
| * |
| * \param _Scalar the scalar type, i.e. the type of the coefficients |
| * \param _Rows the number of rows at compile-time. Use the special value \a Dynamic to |
| * specify that the number of rows is dynamic, i.e. is not fixed at compile-time. |
| * \param _Cols the number of columns at compile-time. Use the special value \a Dynamic to |
| * specify that the number of columns is dynamic, i.e. is not fixed at compile-time. |
| * \param _MaxRows the maximum number of rows at compile-time. By default this is equal to \a _Rows. |
| * The most common exception is when you don't know the exact number of rows, but know that |
| * it is smaller than some given value. Then you can set \a _MaxRows to that value, and set |
| * _Rows to \a Dynamic. |
| * \param _MaxCols the maximum number of cols at compile-time. By default this is equal to \a _Cols. |
| * The most common exception is when you don't know the exact number of cols, but know that |
| * it is smaller than some given value. Then you can set \a _MaxCols to that value, and set |
| * _Cols to \a Dynamic. |
| * \param _Flags allows to control certain features such as storage order. See the \ref flags "list of flags". |
| * |
| * This single class template covers all kinds of matrix and vectors that Eigen can handle. |
| * All matrix and vector types are just typedefs to specializations of this class template. |
| * |
| * These typedefs are as follows: |
| * \li \c %Matrix\#\#Size\#\#Type for square matrices |
| * \li \c Vector\#\#Size\#\#Type for vectors (matrices with one column) |
| * \li \c RowVector\#\#Size\#\#Type for row-vectors (matrices with one row) |
| * |
| * where \c Size can be |
| * \li \c 2 for fixed size 2 |
| * \li \c 3 for fixed size 3 |
| * \li \c 4 for fixed size 4 |
| * \li \c X for dynamic size |
| * |
| * and \c Type can be |
| * \li \c i for type \c int |
| * \li \c f for type \c float |
| * \li \c d for type \c double |
| * \li \c cf for type \c std::complex<float> |
| * \li \c cd for type \c std::complex<double> |
| * |
| * Examples: |
| * \li \c Matrix2d is a typedef for \c Matrix<double,2,2> |
| * \li \c VectorXf is a typedef for \c Matrix<float,Dynamic,1> |
| * \li \c RowVector3i is a typedef for \c Matrix<int,1,3> |
| * |
| * Of course these typedefs do not exhaust all the possibilities offered by the Matrix class |
| * template, they only address some of the most common cases. For instance, if you want a |
| * fixed-size matrix with 3 rows and 5 columns, there is no typedef for that, so you should use |
| * \c Matrix<double,3,5>. |
| * |
| * Note that most of the API is in the base class MatrixBase. |
| */ |
| template<typename _Scalar, int _Rows, int _Cols, int _MaxRows, int _MaxCols, unsigned int _Flags> |
| struct ei_traits<Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags> > |
| { |
| typedef _Scalar Scalar; |
| enum { |
| RowsAtCompileTime = _Rows, |
| ColsAtCompileTime = _Cols, |
| MaxRowsAtCompileTime = _MaxRows, |
| MaxColsAtCompileTime = _MaxCols, |
| Flags = ei_corrected_matrix_flags< |
| _Scalar, |
| _Rows, _Cols, _MaxRows, _MaxCols, |
| _Flags |
| >::ret, |
| CoeffReadCost = NumTraits<Scalar>::ReadCost, |
| SupportedAccessPatterns = RandomAccessPattern |
| }; |
| }; |
| |
| template<typename _Scalar, int _Rows, int _Cols, int _MaxRows, int _MaxCols, unsigned int _Flags> |
| class Matrix : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCols, _Flags> > |
| { |
| public: |
| EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix) |
| friend class Eigen::Map<Matrix, Unaligned>; |
| friend class Eigen::Map<Matrix, Aligned>; |
| |
| protected: |
| ei_matrix_storage<Scalar, MaxSizeAtCompileTime, RowsAtCompileTime, ColsAtCompileTime> m_storage; |
| |
| public: |
| |
| inline int rows() const { return m_storage.rows(); } |
| inline int cols() const { return m_storage.cols(); } |
| |
| inline int stride(void) const |
| { |
| if(Flags & RowMajorBit) |
| return m_storage.cols(); |
| else |
| return m_storage.rows(); |
| } |
| |
| inline const Scalar& coeff(int row, int col) const |
| { |
| if(Flags & RowMajorBit) |
| return m_storage.data()[col + row * m_storage.cols()]; |
| else // column-major |
| return m_storage.data()[row + col * m_storage.rows()]; |
| } |
| |
| inline const Scalar& coeff(int index) const |
| { |
| return m_storage.data()[index]; |
| } |
| |
| inline Scalar& coeffRef(int row, int col) |
| { |
| if(Flags & RowMajorBit) |
| return m_storage.data()[col + row * m_storage.cols()]; |
| else // column-major |
| return m_storage.data()[row + col * m_storage.rows()]; |
| } |
| |
| inline Scalar& coeffRef(int index) |
| { |
| return m_storage.data()[index]; |
| } |
| |
| template<int LoadMode> |
| inline PacketScalar packet(int row, int col) const |
| { |
| return ei_ploadt<Scalar, LoadMode> |
| (m_storage.data() + (Flags & RowMajorBit |
| ? col + row * m_storage.cols() |
| : row + col * m_storage.rows())); |
| } |
| |
| template<int LoadMode> |
| inline PacketScalar packet(int index) const |
| { |
| return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index); |
| } |
| |
| template<int StoreMode> |
| inline void writePacket(int row, int col, const PacketScalar& x) |
| { |
| ei_pstoret<Scalar, PacketScalar, StoreMode> |
| (m_storage.data() + (Flags & RowMajorBit |
| ? col + row * m_storage.cols() |
| : row + col * m_storage.rows()), x); |
| } |
| |
| template<int StoreMode> |
| inline void writePacket(int index, const PacketScalar& x) |
| { |
| ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x); |
| } |
| |
| public: |
| /** \returns a const pointer to the data array of this matrix */ |
| inline const Scalar *data() const |
| { return m_storage.data(); } |
| |
| /** \returns a pointer to the data array of this matrix */ |
| inline Scalar *data() |
| { return m_storage.data(); } |
| |
| inline void resize(int rows, int cols) |
| { |
| ei_assert(rows > 0 |
| && (MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows) |
| && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows) |
| && cols > 0 |
| && (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols) |
| && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)); |
| m_storage.resize(rows * cols, rows, cols); |
| } |
| |
| /** Copies the value of the expression \a other into *this. |
| * |
| * *this is resized (if possible) to match the dimensions of \a other. |
| * |
| * As a special exception, copying a row-vector into a vector (and conversely) |
| * is allowed. The resizing, if any, is then done in the appropriate way so that |
| * row-vectors remain row-vectors and vectors remain vectors. |
| */ |
| template<typename OtherDerived> |
| inline Matrix& operator=(const MatrixBase<OtherDerived>& other) |
| { |
| if(RowsAtCompileTime == 1) |
| { |
| ei_assert(other.isVector()); |
| resize(1, other.size()); |
| } |
| else if(ColsAtCompileTime == 1) |
| { |
| ei_assert(other.isVector()); |
| resize(other.size(), 1); |
| } |
| else resize(other.rows(), other.cols()); |
| return Base::operator=(other.derived()); |
| } |
| |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| inline Matrix& operator=(const Matrix& other) |
| { |
| return operator=<Matrix>(other); |
| } |
| |
| EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, +=) |
| EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, -=) |
| EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, *=) |
| EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, /=) |
| |
| /** Default constructor. |
| * |
| * For fixed-size matrices, does nothing. |
| * |
| * For dynamic-size matrices, initializes with initial size 1x1, which is inefficient, hence |
| * when performance matters one should avoid using this constructor on dynamic-size matrices. |
| */ |
| inline explicit Matrix() : m_storage(1, 1, 1) |
| { |
| ei_assert(RowsAtCompileTime > 0 && ColsAtCompileTime > 0); |
| } |
| |
| /** Constructs a vector or row-vector with given dimension. \only_for_vectors |
| * |
| * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, |
| * it is redundant to pass the dimension here, so it makes more sense to use the default |
| * constructor Matrix() instead. |
| */ |
| inline explicit Matrix(int dim) |
| : m_storage(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix) |
| ei_assert(dim > 0); |
| ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim); |
| } |
| |
| /** This constructor has two very different behaviors, depending on the type of *this. |
| * |
| * \li When Matrix is a fixed-size vector type of size 2, this constructor constructs |
| * an initialized vector. The parameters \a x, \a y are copied into the first and second |
| * coords of the vector respectively. |
| * \li Otherwise, this constructor constructs an uninitialized matrix with \a x rows and |
| * \a y columns. This is useful for dynamic-size matrices. For fixed-size matrices, |
| * it is redundant to pass these parameters, so one should use the default constructor |
| * Matrix() instead. |
| */ |
| inline Matrix(int x, int y) : m_storage(x*y, x, y) |
| { |
| if((RowsAtCompileTime == 1 && ColsAtCompileTime == 2) |
| || (RowsAtCompileTime == 2 && ColsAtCompileTime == 1)) |
| { |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| } |
| else |
| { |
| ei_assert(x > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == x) |
| && y > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == y)); |
| } |
| } |
| /** constructs an initialized 2D vector with given coefficients */ |
| inline Matrix(const float& x, const float& y) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2); |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| } |
| /** constructs an initialized 2D vector with given coefficients */ |
| inline Matrix(const double& x, const double& y) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2); |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| } |
| /** constructs an initialized 3D vector with given coefficients */ |
| inline Matrix(const Scalar& x, const Scalar& y, const Scalar& z) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3); |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| m_storage.data()[2] = z; |
| } |
| /** constructs an initialized 4D vector with given coefficients */ |
| inline Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4); |
| m_storage.data()[0] = x; |
| m_storage.data()[1] = y; |
| m_storage.data()[2] = z; |
| m_storage.data()[3] = w; |
| } |
| |
| explicit Matrix(const Scalar *data); |
| |
| /** Constructor copying the value of the expression \a other */ |
| template<typename OtherDerived> |
| inline Matrix(const MatrixBase<OtherDerived>& other) |
| : m_storage(other.rows() * other.cols(), other.rows(), other.cols()) |
| { |
| Base::lazyAssign(other.derived()); |
| } |
| /** Copy constructor */ |
| inline Matrix(const Matrix& other) |
| : Base(), m_storage(other.rows() * other.cols(), other.rows(), other.cols()) |
| { |
| Base::lazyAssign(other); |
| } |
| /** Destructor */ |
| inline ~Matrix() {} |
| |
| /** Override MatrixBase::eval() since matrices don't need to be evaluated, it is enough to just read them. |
| * This prevents a useless copy when doing e.g. "m1 = m2.eval()" |
| */ |
| const Matrix& eval() const |
| { |
| return *this; |
| } |
| |
| /** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the |
| * data pointers. |
| */ |
| void swap(Matrix& other) |
| { |
| if (Base::SizeAtCompileTime==Dynamic) |
| m_storage.swap(other.m_storage); |
| else |
| this->Base::swap(other); |
| } |
| }; |
| |
| #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ |
| typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \ |
| typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \ |
| typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix; |
| |
| #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) |
| |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd) |
| |
| #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES |
| #undef EIGEN_MAKE_TYPEDEFS |
| |
| #define EIGEN_MAKE_TYPEDEFS_LARGE(Type, TypeSuffix) \ |
| typedef Matrix<Type, Dynamic, Dynamic, EIGEN_DEFAULT_MATRIX_FLAGS | LargeBit> MatrixXL##TypeSuffix; \ |
| typedef Matrix<Type, Dynamic, 1, EIGEN_DEFAULT_MATRIX_FLAGS | LargeBit> VectorXL##TypeSuffix; \ |
| typedef Matrix<Type, 1, Dynamic, EIGEN_DEFAULT_MATRIX_FLAGS | LargeBit> RowVectorXL##TypeSuffix; |
| |
| EIGEN_MAKE_TYPEDEFS_LARGE(int, i) |
| EIGEN_MAKE_TYPEDEFS_LARGE(float, f) |
| EIGEN_MAKE_TYPEDEFS_LARGE(double, d) |
| EIGEN_MAKE_TYPEDEFS_LARGE(std::complex<float>, cf) |
| EIGEN_MAKE_TYPEDEFS_LARGE(std::complex<double>, cd) |
| |
| #undef EIGEN_MAKE_TYPEDEFS_LARGE |
| |
| #define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ |
| using Eigen::Matrix##SizeSuffix##TypeSuffix; \ |
| using Eigen::Vector##SizeSuffix##TypeSuffix; \ |
| using Eigen::RowVector##SizeSuffix##TypeSuffix; |
| |
| #define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, XL) |
| |
| #define EIGEN_USING_MATRIX_TYPEDEFS \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \ |
| EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd) |
| |
| #endif // EIGEN_MATRIX_H |