|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_LLT_H | 
|  | #define EIGEN_LLT_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal{ | 
|  | template<typename MatrixType, int UpLo> struct LLT_Traits; | 
|  | } | 
|  |  | 
|  | /** \ingroup Cholesky_Module | 
|  | * | 
|  | * \class LLT | 
|  | * | 
|  | * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features | 
|  | * | 
|  | * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition | 
|  | * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. | 
|  | *             The other triangular part won't be read. | 
|  | * | 
|  | * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite | 
|  | * matrix A such that A = LL^* = U^*U, where L is lower triangular. | 
|  | * | 
|  | * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like  D^*D x = b, | 
|  | * for that purpose, we recommend the Cholesky decomposition without square root which is more stable | 
|  | * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other | 
|  | * situations like generalised eigen problems with hermitian matrices. | 
|  | * | 
|  | * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, | 
|  | * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations | 
|  | * has a solution. | 
|  | * | 
|  | * Example: \include LLT_example.cpp | 
|  | * Output: \verbinclude LLT_example.out | 
|  | * | 
|  | * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT | 
|  | */ | 
|  | /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) | 
|  | * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, | 
|  | * the strict lower part does not have to store correct values. | 
|  | */ | 
|  | template<typename _MatrixType, int _UpLo> class LLT | 
|  | { | 
|  | public: | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  |  | 
|  | enum { | 
|  | PacketSize = internal::packet_traits<Scalar>::size, | 
|  | AlignmentMask = int(PacketSize)-1, | 
|  | UpLo = _UpLo | 
|  | }; | 
|  |  | 
|  | typedef internal::LLT_Traits<MatrixType,UpLo> Traits; | 
|  |  | 
|  | /** | 
|  | * \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via LLT::compute(const MatrixType&). | 
|  | */ | 
|  | LLT() : m_matrix(), m_isInitialized(false) {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa LLT() | 
|  | */ | 
|  | explicit LLT(Index size) : m_matrix(size, size), | 
|  | m_isInitialized(false) {} | 
|  |  | 
|  | explicit LLT(const MatrixType& matrix) | 
|  | : m_matrix(matrix.rows(), matrix.cols()), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | /** \returns a view of the upper triangular matrix U */ | 
|  | inline typename Traits::MatrixU matrixU() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | return Traits::getU(m_matrix); | 
|  | } | 
|  |  | 
|  | /** \returns a view of the lower triangular matrix L */ | 
|  | inline typename Traits::MatrixL matrixL() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | return Traits::getL(m_matrix); | 
|  | } | 
|  |  | 
|  | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. | 
|  | * | 
|  | * Since this LLT class assumes anyway that the matrix A is invertible, the solution | 
|  | * theoretically exists and is unique regardless of b. | 
|  | * | 
|  | * Example: \include LLT_solve.cpp | 
|  | * Output: \verbinclude LLT_solve.out | 
|  | * | 
|  | * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() | 
|  | */ | 
|  | template<typename Rhs> | 
|  | inline const Solve<LLT, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | eigen_assert(m_matrix.rows()==b.rows() | 
|  | && "LLT::solve(): invalid number of rows of the right hand side matrix b"); | 
|  | return Solve<LLT, Rhs>(*this, b.derived()); | 
|  | } | 
|  |  | 
|  | template<typename Derived> | 
|  | void solveInPlace(MatrixBase<Derived> &bAndX) const; | 
|  |  | 
|  | LLT& compute(const MatrixType& matrix); | 
|  |  | 
|  | /** \returns the LLT decomposition matrix | 
|  | * | 
|  | * TODO: document the storage layout | 
|  | */ | 
|  | inline const MatrixType& matrixLLT() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | return m_matrix; | 
|  | } | 
|  |  | 
|  | MatrixType reconstructedMatrix() const; | 
|  |  | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was succesful, | 
|  | *          \c NumericalIssue if the matrix.appears to be negative. | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | inline Index rows() const { return m_matrix.rows(); } | 
|  | inline Index cols() const { return m_matrix.cols(); } | 
|  |  | 
|  | template<typename VectorType> | 
|  | LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename RhsType, typename DstType> | 
|  | EIGEN_DEVICE_FUNC | 
|  | void _solve_impl(const RhsType &rhs, DstType &dst) const; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  |  | 
|  | static void check_template_parameters() | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * Used to compute and store L | 
|  | * The strict upper part is not used and even not initialized. | 
|  | */ | 
|  | MatrixType m_matrix; | 
|  | bool m_isInitialized; | 
|  | ComputationInfo m_info; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename Scalar, int UpLo> struct llt_inplace; | 
|  |  | 
|  | template<typename MatrixType, typename VectorType> | 
|  | static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) | 
|  | { | 
|  | using std::sqrt; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::ColXpr ColXpr; | 
|  | typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; | 
|  | typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; | 
|  | typedef Matrix<Scalar,Dynamic,1> TempVectorType; | 
|  | typedef typename TempVectorType::SegmentReturnType TempVecSegment; | 
|  |  | 
|  | Index n = mat.cols(); | 
|  | eigen_assert(mat.rows()==n && vec.size()==n); | 
|  |  | 
|  | TempVectorType temp; | 
|  |  | 
|  | if(sigma>0) | 
|  | { | 
|  | // This version is based on Givens rotations. | 
|  | // It is faster than the other one below, but only works for updates, | 
|  | // i.e., for sigma > 0 | 
|  | temp = sqrt(sigma) * vec; | 
|  |  | 
|  | for(Index i=0; i<n; ++i) | 
|  | { | 
|  | JacobiRotation<Scalar> g; | 
|  | g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); | 
|  |  | 
|  | Index rs = n-i-1; | 
|  | if(rs>0) | 
|  | { | 
|  | ColXprSegment x(mat.col(i).tail(rs)); | 
|  | TempVecSegment y(temp.tail(rs)); | 
|  | apply_rotation_in_the_plane(x, y, g); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | temp = vec; | 
|  | RealScalar beta = 1; | 
|  | for(Index j=0; j<n; ++j) | 
|  | { | 
|  | RealScalar Ljj = numext::real(mat.coeff(j,j)); | 
|  | RealScalar dj = numext::abs2(Ljj); | 
|  | Scalar wj = temp.coeff(j); | 
|  | RealScalar swj2 = sigma*numext::abs2(wj); | 
|  | RealScalar gamma = dj*beta + swj2; | 
|  |  | 
|  | RealScalar x = dj + swj2/beta; | 
|  | if (x<=RealScalar(0)) | 
|  | return j; | 
|  | RealScalar nLjj = sqrt(x); | 
|  | mat.coeffRef(j,j) = nLjj; | 
|  | beta += swj2/dj; | 
|  |  | 
|  | // Update the terms of L | 
|  | Index rs = n-j-1; | 
|  | if(rs) | 
|  | { | 
|  | temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); | 
|  | if(gamma != 0) | 
|  | mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); | 
|  | } | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | template<typename Scalar> struct llt_inplace<Scalar, Lower> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | template<typename MatrixType> | 
|  | static Index unblocked(MatrixType& mat) | 
|  | { | 
|  | using std::sqrt; | 
|  |  | 
|  | eigen_assert(mat.rows()==mat.cols()); | 
|  | const Index size = mat.rows(); | 
|  | for(Index k = 0; k < size; ++k) | 
|  | { | 
|  | Index rs = size-k-1; // remaining size | 
|  |  | 
|  | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); | 
|  | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); | 
|  | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); | 
|  |  | 
|  | RealScalar x = numext::real(mat.coeff(k,k)); | 
|  | if (k>0) x -= A10.squaredNorm(); | 
|  | if (x<=RealScalar(0)) | 
|  | return k; | 
|  | mat.coeffRef(k,k) = x = sqrt(x); | 
|  | if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); | 
|  | if (rs>0) A21 *= RealScalar(1)/x; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | static Index blocked(MatrixType& m) | 
|  | { | 
|  | eigen_assert(m.rows()==m.cols()); | 
|  | Index size = m.rows(); | 
|  | if(size<32) | 
|  | return unblocked(m); | 
|  |  | 
|  | Index blockSize = size/8; | 
|  | blockSize = (blockSize/16)*16; | 
|  | blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); | 
|  |  | 
|  | for (Index k=0; k<size; k+=blockSize) | 
|  | { | 
|  | // partition the matrix: | 
|  | //       A00 |  -  |  - | 
|  | // lu  = A10 | A11 |  - | 
|  | //       A20 | A21 | A22 | 
|  | Index bs = (std::min)(blockSize, size-k); | 
|  | Index rs = size - k - bs; | 
|  | Block<MatrixType,Dynamic,Dynamic> A11(m,k,   k,   bs,bs); | 
|  | Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k,   rs,bs); | 
|  | Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); | 
|  |  | 
|  | Index ret; | 
|  | if((ret=unblocked(A11))>=0) return k+ret; | 
|  | if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); | 
|  | if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType, typename VectorType> | 
|  | static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) | 
|  | { | 
|  | return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> struct llt_inplace<Scalar, Upper> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) | 
|  | { | 
|  | Transpose<MatrixType> matt(mat); | 
|  | return llt_inplace<Scalar, Lower>::unblocked(matt); | 
|  | } | 
|  | template<typename MatrixType> | 
|  | static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) | 
|  | { | 
|  | Transpose<MatrixType> matt(mat); | 
|  | return llt_inplace<Scalar, Lower>::blocked(matt); | 
|  | } | 
|  | template<typename MatrixType, typename VectorType> | 
|  | static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) | 
|  | { | 
|  | Transpose<MatrixType> matt(mat); | 
|  | return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> | 
|  | { | 
|  | typedef const TriangularView<const MatrixType, Lower> MatrixL; | 
|  | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; | 
|  | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } | 
|  | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } | 
|  | static bool inplace_decomposition(MatrixType& m) | 
|  | { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> | 
|  | { | 
|  | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; | 
|  | typedef const TriangularView<const MatrixType, Upper> MatrixU; | 
|  | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } | 
|  | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } | 
|  | static bool inplace_decomposition(MatrixType& m) | 
|  | { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix | 
|  | * | 
|  | * \returns a reference to *this | 
|  | * | 
|  | * Example: \include TutorialLinAlgComputeTwice.cpp | 
|  | * Output: \verbinclude TutorialLinAlgComputeTwice.out | 
|  | */ | 
|  | template<typename MatrixType, int _UpLo> | 
|  | LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a) | 
|  | { | 
|  | check_template_parameters(); | 
|  |  | 
|  | eigen_assert(a.rows()==a.cols()); | 
|  | const Index size = a.rows(); | 
|  | m_matrix.resize(size, size); | 
|  | m_matrix = a; | 
|  |  | 
|  | m_isInitialized = true; | 
|  | bool ok = Traits::inplace_decomposition(m_matrix); | 
|  | m_info = ok ? Success : NumericalIssue; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Performs a rank one update (or dowdate) of the current decomposition. | 
|  | * If A = LL^* before the rank one update, | 
|  | * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector | 
|  | * of same dimension. | 
|  | */ | 
|  | template<typename _MatrixType, int _UpLo> | 
|  | template<typename VectorType> | 
|  | LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); | 
|  | eigen_assert(v.size()==m_matrix.cols()); | 
|  | eigen_assert(m_isInitialized); | 
|  | if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) | 
|  | m_info = NumericalIssue; | 
|  | else | 
|  | m_info = Success; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename _MatrixType,int _UpLo> | 
|  | template<typename RhsType, typename DstType> | 
|  | void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const | 
|  | { | 
|  | dst = rhs; | 
|  | solveInPlace(dst); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** \internal use x = llt_object.solve(x); | 
|  | * | 
|  | * This is the \em in-place version of solve(). | 
|  | * | 
|  | * \param bAndX represents both the right-hand side matrix b and result x. | 
|  | * | 
|  | * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. | 
|  | * | 
|  | * This version avoids a copy when the right hand side matrix b is not | 
|  | * needed anymore. | 
|  | * | 
|  | * \sa LLT::solve(), MatrixBase::llt() | 
|  | */ | 
|  | template<typename MatrixType, int _UpLo> | 
|  | template<typename Derived> | 
|  | void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | eigen_assert(m_matrix.rows()==bAndX.rows()); | 
|  | matrixL().solveInPlace(bAndX); | 
|  | matrixU().solveInPlace(bAndX); | 
|  | } | 
|  |  | 
|  | /** \returns the matrix represented by the decomposition, | 
|  | * i.e., it returns the product: L L^*. | 
|  | * This function is provided for debug purpose. */ | 
|  | template<typename MatrixType, int _UpLo> | 
|  | MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|  | return matrixL() * matrixL().adjoint().toDenseMatrix(); | 
|  | } | 
|  |  | 
|  | #ifndef __CUDACC__ | 
|  | /** \cholesky_module | 
|  | * \returns the LLT decomposition of \c *this | 
|  | * \sa SelfAdjointView::llt() | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline const LLT<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::llt() const | 
|  | { | 
|  | return LLT<PlainObject>(derived()); | 
|  | } | 
|  |  | 
|  | /** \cholesky_module | 
|  | * \returns the LLT decomposition of \c *this | 
|  | * \sa SelfAdjointView::llt() | 
|  | */ | 
|  | template<typename MatrixType, unsigned int UpLo> | 
|  | inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> | 
|  | SelfAdjointView<MatrixType, UpLo>::llt() const | 
|  | { | 
|  | return LLT<PlainObject,UpLo>(m_matrix); | 
|  | } | 
|  | #endif // __CUDACC__ | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_LLT_H |