|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_CHOLMODSUPPORT_H | 
|  | #define EIGEN_CHOLMODSUPPORT_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename Scalar, typename CholmodType> | 
|  | void cholmod_configure_matrix(CholmodType& mat) | 
|  | { | 
|  | if (internal::is_same<Scalar,float>::value) | 
|  | { | 
|  | mat.xtype = CHOLMOD_REAL; | 
|  | mat.dtype = CHOLMOD_SINGLE; | 
|  | } | 
|  | else if (internal::is_same<Scalar,double>::value) | 
|  | { | 
|  | mat.xtype = CHOLMOD_REAL; | 
|  | mat.dtype = CHOLMOD_DOUBLE; | 
|  | } | 
|  | else if (internal::is_same<Scalar,std::complex<float> >::value) | 
|  | { | 
|  | mat.xtype = CHOLMOD_COMPLEX; | 
|  | mat.dtype = CHOLMOD_SINGLE; | 
|  | } | 
|  | else if (internal::is_same<Scalar,std::complex<double> >::value) | 
|  | { | 
|  | mat.xtype = CHOLMOD_COMPLEX; | 
|  | mat.dtype = CHOLMOD_DOUBLE; | 
|  | } | 
|  | else | 
|  | { | 
|  | eigen_assert(false && "Scalar type not supported by CHOLMOD"); | 
|  | } | 
|  | } | 
|  |  | 
|  | } // namespace internal | 
|  |  | 
|  | /** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object. | 
|  | * Note that the data are shared. | 
|  | */ | 
|  | template<typename _Scalar, int _Options, typename _StorageIndex> | 
|  | cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_StorageIndex>& mat) | 
|  | { | 
|  | cholmod_sparse res; | 
|  | res.nzmax   = mat.nonZeros(); | 
|  | res.nrow    = mat.rows();; | 
|  | res.ncol    = mat.cols(); | 
|  | res.p       = mat.outerIndexPtr(); | 
|  | res.i       = mat.innerIndexPtr(); | 
|  | res.x       = mat.valuePtr(); | 
|  | res.z       = 0; | 
|  | res.sorted  = 1; | 
|  | if(mat.isCompressed()) | 
|  | { | 
|  | res.packed  = 1; | 
|  | res.nz = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | res.packed  = 0; | 
|  | res.nz = mat.innerNonZeroPtr(); | 
|  | } | 
|  |  | 
|  | res.dtype   = 0; | 
|  | res.stype   = -1; | 
|  |  | 
|  | if (internal::is_same<_StorageIndex,int>::value) | 
|  | { | 
|  | res.itype = CHOLMOD_INT; | 
|  | } | 
|  | else if (internal::is_same<_StorageIndex,UF_long>::value) | 
|  | { | 
|  | res.itype = CHOLMOD_LONG; | 
|  | } | 
|  | else | 
|  | { | 
|  | eigen_assert(false && "Index type not supported yet"); | 
|  | } | 
|  |  | 
|  | // setup res.xtype | 
|  | internal::cholmod_configure_matrix<_Scalar>(res); | 
|  |  | 
|  | res.stype = 0; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template<typename _Scalar, int _Options, typename _Index> | 
|  | const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat) | 
|  | { | 
|  | cholmod_sparse res = viewAsCholmod(mat.const_cast_derived()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix. | 
|  | * The data are not copied but shared. */ | 
|  | template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo> | 
|  | cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat) | 
|  | { | 
|  | cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived()); | 
|  |  | 
|  | if(UpLo==Upper) res.stype =  1; | 
|  | if(UpLo==Lower) res.stype = -1; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix. | 
|  | * The data are not copied but shared. */ | 
|  | template<typename Derived> | 
|  | cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); | 
|  | typedef typename Derived::Scalar Scalar; | 
|  |  | 
|  | cholmod_dense res; | 
|  | res.nrow   = mat.rows(); | 
|  | res.ncol   = mat.cols(); | 
|  | res.nzmax  = res.nrow * res.ncol; | 
|  | res.d      = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride(); | 
|  | res.x      = (void*)(mat.derived().data()); | 
|  | res.z      = 0; | 
|  |  | 
|  | internal::cholmod_configure_matrix<Scalar>(res); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix. | 
|  | * The data are not copied but shared. */ | 
|  | template<typename Scalar, int Flags, typename StorageIndex> | 
|  | MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm) | 
|  | { | 
|  | return MappedSparseMatrix<Scalar,Flags,StorageIndex> | 
|  | (cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol], | 
|  | static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) ); | 
|  | } | 
|  |  | 
|  | enum CholmodMode { | 
|  | CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** \ingroup CholmodSupport_Module | 
|  | * \class CholmodBase | 
|  | * \brief The base class for the direct Cholesky factorization of Cholmod | 
|  | * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT | 
|  | */ | 
|  | template<typename _MatrixType, int _UpLo, typename Derived> | 
|  | class CholmodBase : public SparseSolverBase<Derived> | 
|  | { | 
|  | protected: | 
|  | typedef SparseSolverBase<Derived> Base; | 
|  | using Base::derived; | 
|  | using Base::m_isInitialized; | 
|  | public: | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { UpLo = _UpLo }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef MatrixType CholMatrixType; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  |  | 
|  | public: | 
|  |  | 
|  | CholmodBase() | 
|  | : m_cholmodFactor(0), m_info(Success) | 
|  | { | 
|  | m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0); | 
|  | cholmod_start(&m_cholmod); | 
|  | } | 
|  |  | 
|  | explicit CholmodBase(const MatrixType& matrix) | 
|  | : m_cholmodFactor(0), m_info(Success) | 
|  | { | 
|  | m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0); | 
|  | cholmod_start(&m_cholmod); | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | ~CholmodBase() | 
|  | { | 
|  | if(m_cholmodFactor) | 
|  | cholmod_free_factor(&m_cholmodFactor, &m_cholmod); | 
|  | cholmod_finish(&m_cholmod); | 
|  | } | 
|  |  | 
|  | inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); } | 
|  | inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was succesful, | 
|  | *          \c NumericalIssue if the matrix.appears to be negative. | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** Computes the sparse Cholesky decomposition of \a matrix */ | 
|  | Derived& compute(const MatrixType& matrix) | 
|  | { | 
|  | analyzePattern(matrix); | 
|  | factorize(matrix); | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** Performs a symbolic decomposition on the sparsity pattern of \a matrix. | 
|  | * | 
|  | * This function is particularly useful when solving for several problems having the same structure. | 
|  | * | 
|  | * \sa factorize() | 
|  | */ | 
|  | void analyzePattern(const MatrixType& matrix) | 
|  | { | 
|  | if(m_cholmodFactor) | 
|  | { | 
|  | cholmod_free_factor(&m_cholmodFactor, &m_cholmod); | 
|  | m_cholmodFactor = 0; | 
|  | } | 
|  | cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>()); | 
|  | m_cholmodFactor = cholmod_analyze(&A, &m_cholmod); | 
|  |  | 
|  | this->m_isInitialized = true; | 
|  | this->m_info = Success; | 
|  | m_analysisIsOk = true; | 
|  | m_factorizationIsOk = false; | 
|  | } | 
|  |  | 
|  | /** Performs a numeric decomposition of \a matrix | 
|  | * | 
|  | * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed. | 
|  | * | 
|  | * \sa analyzePattern() | 
|  | */ | 
|  | void factorize(const MatrixType& matrix) | 
|  | { | 
|  | eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); | 
|  | cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>()); | 
|  | cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod); | 
|  |  | 
|  | // If the factorization failed, minor is the column at which it did. On success minor == n. | 
|  | this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue); | 
|  | m_factorizationIsOk = true; | 
|  | } | 
|  |  | 
|  | /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations. | 
|  | *  See the Cholmod user guide for details. */ | 
|  | cholmod_common& cholmod() { return m_cholmod; } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \internal */ | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const | 
|  | { | 
|  | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); | 
|  | const Index size = m_cholmodFactor->n; | 
|  | EIGEN_UNUSED_VARIABLE(size); | 
|  | eigen_assert(size==b.rows()); | 
|  |  | 
|  | // note: cd stands for Cholmod Dense | 
|  | Rhs& b_ref(b.const_cast_derived()); | 
|  | cholmod_dense b_cd = viewAsCholmod(b_ref); | 
|  | cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod); | 
|  | if(!x_cd) | 
|  | { | 
|  | this->m_info = NumericalIssue; | 
|  | return; | 
|  | } | 
|  | // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) | 
|  | dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols()); | 
|  | cholmod_free_dense(&x_cd, &m_cholmod); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex> | 
|  | void _solve_impl(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const | 
|  | { | 
|  | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); | 
|  | const Index size = m_cholmodFactor->n; | 
|  | EIGEN_UNUSED_VARIABLE(size); | 
|  | eigen_assert(size==b.rows()); | 
|  |  | 
|  | // note: cs stands for Cholmod Sparse | 
|  | cholmod_sparse b_cs = viewAsCholmod(b); | 
|  | cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod); | 
|  | if(!x_cs) | 
|  | { | 
|  | this->m_info = NumericalIssue; | 
|  | return; | 
|  | } | 
|  | // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) | 
|  | dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs); | 
|  | cholmod_free_sparse(&x_cs, &m_cholmod); | 
|  | } | 
|  | #endif // EIGEN_PARSED_BY_DOXYGEN | 
|  |  | 
|  |  | 
|  | /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization. | 
|  | * | 
|  | * During the numerical factorization, an offset term is added to the diagonal coefficients:\n | 
|  | * \c d_ii = \a offset + \c d_ii | 
|  | * | 
|  | * The default is \a offset=0. | 
|  | * | 
|  | * \returns a reference to \c *this. | 
|  | */ | 
|  | Derived& setShift(const RealScalar& offset) | 
|  | { | 
|  | m_shiftOffset[0] = offset; | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | template<typename Stream> | 
|  | void dumpMemory(Stream& /*s*/) | 
|  | {} | 
|  |  | 
|  | protected: | 
|  | mutable cholmod_common m_cholmod; | 
|  | cholmod_factor* m_cholmodFactor; | 
|  | RealScalar m_shiftOffset[2]; | 
|  | mutable ComputationInfo m_info; | 
|  | int m_factorizationIsOk; | 
|  | int m_analysisIsOk; | 
|  | }; | 
|  |  | 
|  | /** \ingroup CholmodSupport_Module | 
|  | * \class CholmodSimplicialLLT | 
|  | * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod | 
|  | * | 
|  | * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization | 
|  | * using the Cholmod library. | 
|  | * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest. | 
|  | * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices | 
|  | * X and B can be either dense or sparse. | 
|  | * | 
|  | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower | 
|  | *               or Upper. Default is Lower. | 
|  | * | 
|  | * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. | 
|  | * | 
|  | * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT | 
|  | */ | 
|  | template<typename _MatrixType, int _UpLo = Lower> | 
|  | class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> > | 
|  | { | 
|  | typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base; | 
|  | using Base::m_cholmod; | 
|  |  | 
|  | public: | 
|  |  | 
|  | typedef _MatrixType MatrixType; | 
|  |  | 
|  | CholmodSimplicialLLT() : Base() { init(); } | 
|  |  | 
|  | CholmodSimplicialLLT(const MatrixType& matrix) : Base() | 
|  | { | 
|  | init(); | 
|  | this->compute(matrix); | 
|  | } | 
|  |  | 
|  | ~CholmodSimplicialLLT() {} | 
|  | protected: | 
|  | void init() | 
|  | { | 
|  | m_cholmod.final_asis = 0; | 
|  | m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; | 
|  | m_cholmod.final_ll = 1; | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** \ingroup CholmodSupport_Module | 
|  | * \class CholmodSimplicialLDLT | 
|  | * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod | 
|  | * | 
|  | * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization | 
|  | * using the Cholmod library. | 
|  | * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest. | 
|  | * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices | 
|  | * X and B can be either dense or sparse. | 
|  | * | 
|  | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower | 
|  | *               or Upper. Default is Lower. | 
|  | * | 
|  | * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. | 
|  | * | 
|  | * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT | 
|  | */ | 
|  | template<typename _MatrixType, int _UpLo = Lower> | 
|  | class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> > | 
|  | { | 
|  | typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base; | 
|  | using Base::m_cholmod; | 
|  |  | 
|  | public: | 
|  |  | 
|  | typedef _MatrixType MatrixType; | 
|  |  | 
|  | CholmodSimplicialLDLT() : Base() { init(); } | 
|  |  | 
|  | CholmodSimplicialLDLT(const MatrixType& matrix) : Base() | 
|  | { | 
|  | init(); | 
|  | this->compute(matrix); | 
|  | } | 
|  |  | 
|  | ~CholmodSimplicialLDLT() {} | 
|  | protected: | 
|  | void init() | 
|  | { | 
|  | m_cholmod.final_asis = 1; | 
|  | m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \ingroup CholmodSupport_Module | 
|  | * \class CholmodSupernodalLLT | 
|  | * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod | 
|  | * | 
|  | * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization | 
|  | * using the Cholmod library. | 
|  | * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM. | 
|  | * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices | 
|  | * X and B can be either dense or sparse. | 
|  | * | 
|  | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower | 
|  | *               or Upper. Default is Lower. | 
|  | * | 
|  | * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. | 
|  | * | 
|  | * \sa \ref TutorialSparseDirectSolvers | 
|  | */ | 
|  | template<typename _MatrixType, int _UpLo = Lower> | 
|  | class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> > | 
|  | { | 
|  | typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base; | 
|  | using Base::m_cholmod; | 
|  |  | 
|  | public: | 
|  |  | 
|  | typedef _MatrixType MatrixType; | 
|  |  | 
|  | CholmodSupernodalLLT() : Base() { init(); } | 
|  |  | 
|  | CholmodSupernodalLLT(const MatrixType& matrix) : Base() | 
|  | { | 
|  | init(); | 
|  | this->compute(matrix); | 
|  | } | 
|  |  | 
|  | ~CholmodSupernodalLLT() {} | 
|  | protected: | 
|  | void init() | 
|  | { | 
|  | m_cholmod.final_asis = 1; | 
|  | m_cholmod.supernodal = CHOLMOD_SUPERNODAL; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \ingroup CholmodSupport_Module | 
|  | * \class CholmodDecomposition | 
|  | * \brief A general Cholesky factorization and solver based on Cholmod | 
|  | * | 
|  | * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization | 
|  | * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices | 
|  | * X and B can be either dense or sparse. | 
|  | * | 
|  | * This variant permits to change the underlying Cholesky method at runtime. | 
|  | * On the other hand, it does not provide access to the result of the factorization. | 
|  | * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization. | 
|  | * | 
|  | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower | 
|  | *               or Upper. Default is Lower. | 
|  | * | 
|  | * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. | 
|  | * | 
|  | * \sa \ref TutorialSparseDirectSolvers | 
|  | */ | 
|  | template<typename _MatrixType, int _UpLo = Lower> | 
|  | class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> > | 
|  | { | 
|  | typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base; | 
|  | using Base::m_cholmod; | 
|  |  | 
|  | public: | 
|  |  | 
|  | typedef _MatrixType MatrixType; | 
|  |  | 
|  | CholmodDecomposition() : Base() { init(); } | 
|  |  | 
|  | CholmodDecomposition(const MatrixType& matrix) : Base() | 
|  | { | 
|  | init(); | 
|  | this->compute(matrix); | 
|  | } | 
|  |  | 
|  | ~CholmodDecomposition() {} | 
|  |  | 
|  | void setMode(CholmodMode mode) | 
|  | { | 
|  | switch(mode) | 
|  | { | 
|  | case CholmodAuto: | 
|  | m_cholmod.final_asis = 1; | 
|  | m_cholmod.supernodal = CHOLMOD_AUTO; | 
|  | break; | 
|  | case CholmodSimplicialLLt: | 
|  | m_cholmod.final_asis = 0; | 
|  | m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; | 
|  | m_cholmod.final_ll = 1; | 
|  | break; | 
|  | case CholmodSupernodalLLt: | 
|  | m_cholmod.final_asis = 1; | 
|  | m_cholmod.supernodal = CHOLMOD_SUPERNODAL; | 
|  | break; | 
|  | case CholmodLDLt: | 
|  | m_cholmod.final_asis = 1; | 
|  | m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | protected: | 
|  | void init() | 
|  | { | 
|  | m_cholmod.final_asis = 1; | 
|  | m_cholmod.supernodal = CHOLMOD_AUTO; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_CHOLMODSUPPORT_H |