| |
| // g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2 ./a.out |
| // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp && OMP_NUM_THREADS=2 ./a.out |
| |
| // Compilation options: |
| // |
| // -DSCALAR=std::complex<double> |
| // -DSCALARA=double or -DSCALARB=double |
| // -DHAVE_BLAS |
| // -DDECOUPLED |
| // |
| |
| #include <iostream> |
| #include <bench/BenchTimer.h> |
| #include <Eigen/Core> |
| |
| using namespace std; |
| using namespace Eigen; |
| |
| #ifndef SCALAR |
| // #define SCALAR std::complex<float> |
| #define SCALAR float |
| #endif |
| |
| #ifndef SCALARA |
| #define SCALARA SCALAR |
| #endif |
| |
| #ifndef SCALARB |
| #define SCALARB SCALAR |
| #endif |
| |
| #ifdef ROWMAJ_A |
| const int opt_A = RowMajor; |
| #else |
| const int opt_A = ColMajor; |
| #endif |
| |
| #ifdef ROWMAJ_B |
| const int opt_B = RowMajor; |
| #else |
| const int opt_B = ColMajor; |
| #endif |
| |
| typedef SCALAR Scalar; |
| typedef NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<SCALARA, Dynamic, Dynamic, opt_A> A; |
| typedef Matrix<SCALARB, Dynamic, Dynamic, opt_B> B; |
| typedef Matrix<Scalar, Dynamic, Dynamic> C; |
| typedef Matrix<RealScalar, Dynamic, Dynamic> M; |
| |
| #ifdef HAVE_BLAS |
| |
| extern "C" { |
| #include <Eigen/src/misc/blas.h> |
| } |
| |
| static float fone = 1; |
| static float fzero = 0; |
| static double done = 1; |
| static double szero = 0; |
| static std::complex<float> cfone = 1; |
| static std::complex<float> cfzero = 0; |
| static std::complex<double> cdone = 1; |
| static std::complex<double> cdzero = 0; |
| static char notrans = 'N'; |
| static char trans = 'T'; |
| static char nonunit = 'N'; |
| static char lower = 'L'; |
| static char right = 'R'; |
| static int intone = 1; |
| |
| #ifdef ROWMAJ_A |
| const char transA = trans; |
| #else |
| const char transA = notrans; |
| #endif |
| |
| #ifdef ROWMAJ_B |
| const char transB = trans; |
| #else |
| const char transB = notrans; |
| #endif |
| |
| template <typename A, typename B> |
| void blas_gemm(const A& a, const B& b, MatrixXf& c) { |
| int M = c.rows(); |
| int N = c.cols(); |
| int K = a.cols(); |
| int lda = a.outerStride(); |
| int ldb = b.outerStride(); |
| int ldc = c.rows(); |
| |
| sgemm_(&transA, &transB, &M, &N, &K, &fone, const_cast<float*>(a.data()), &lda, const_cast<float*>(b.data()), &ldb, |
| &fone, c.data(), &ldc); |
| } |
| |
| template <typename A, typename B> |
| void blas_gemm(const A& a, const B& b, MatrixXd& c) { |
| int M = c.rows(); |
| int N = c.cols(); |
| int K = a.cols(); |
| int lda = a.outerStride(); |
| int ldb = b.outerStride(); |
| int ldc = c.rows(); |
| |
| dgemm_(&transA, &transB, &M, &N, &K, &done, const_cast<double*>(a.data()), &lda, const_cast<double*>(b.data()), &ldb, |
| &done, c.data(), &ldc); |
| } |
| |
| template <typename A, typename B> |
| void blas_gemm(const A& a, const B& b, MatrixXcf& c) { |
| int M = c.rows(); |
| int N = c.cols(); |
| int K = a.cols(); |
| int lda = a.outerStride(); |
| int ldb = b.outerStride(); |
| int ldc = c.rows(); |
| |
| cgemm_(&transA, &transB, &M, &N, &K, (float*)&cfone, const_cast<float*>((const float*)a.data()), &lda, |
| const_cast<float*>((const float*)b.data()), &ldb, (float*)&cfone, (float*)c.data(), &ldc); |
| } |
| |
| template <typename A, typename B> |
| void blas_gemm(const A& a, const B& b, MatrixXcd& c) { |
| int M = c.rows(); |
| int N = c.cols(); |
| int K = a.cols(); |
| int lda = a.outerStride(); |
| int ldb = b.outerStride(); |
| int ldc = c.rows(); |
| |
| zgemm_(&transA, &transB, &M, &N, &K, (double*)&cdone, const_cast<double*>((const double*)a.data()), &lda, |
| const_cast<double*>((const double*)b.data()), &ldb, (double*)&cdone, (double*)c.data(), &ldc); |
| } |
| |
| #endif |
| |
| void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci) { |
| cr.noalias() += ar * br; |
| cr.noalias() -= ai * bi; |
| ci.noalias() += ar * bi; |
| ci.noalias() += ai * br; |
| // [cr ci] += [ar ai] * br + [-ai ar] * bi |
| } |
| |
| void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci) { |
| cr.noalias() += a * br; |
| ci.noalias() += a * bi; |
| } |
| |
| void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci) { |
| cr.noalias() += ar * b; |
| ci.noalias() += ai * b; |
| } |
| |
| template <typename A, typename B, typename C> |
| EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) { |
| c.noalias() += a * b; |
| } |
| |
| int main(int argc, char** argv) { |
| std::ptrdiff_t l1 = internal::queryL1CacheSize(); |
| std::ptrdiff_t l2 = internal::queryTopLevelCacheSize(); |
| std::cout << "L1 cache size = " << (l1 > 0 ? l1 / 1024 : -1) << " KB\n"; |
| std::cout << "L2/L3 cache size = " << (l2 > 0 ? l2 / 1024 : -1) << " KB\n"; |
| typedef internal::gebp_traits<Scalar, Scalar> Traits; |
| std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n"; |
| |
| int rep = 1; // number of repetitions per try |
| int tries = 2; // number of tries, we keep the best |
| |
| int s = 2048; |
| int m = s; |
| int n = s; |
| int p = s; |
| int cache_size1 = -1, cache_size2 = l2, cache_size3 = 0; |
| |
| bool need_help = false; |
| for (int i = 1; i < argc;) { |
| if (argv[i][0] == '-') { |
| if (argv[i][1] == 's') { |
| ++i; |
| s = atoi(argv[i++]); |
| m = n = p = s; |
| if (argv[i][0] != '-') { |
| n = atoi(argv[i++]); |
| p = atoi(argv[i++]); |
| } |
| } else if (argv[i][1] == 'c') { |
| ++i; |
| cache_size1 = atoi(argv[i++]); |
| if (argv[i][0] != '-') { |
| cache_size2 = atoi(argv[i++]); |
| if (argv[i][0] != '-') cache_size3 = atoi(argv[i++]); |
| } |
| } else if (argv[i][1] == 't') { |
| tries = atoi(argv[++i]); |
| ++i; |
| } else if (argv[i][1] == 'p') { |
| ++i; |
| rep = atoi(argv[i++]); |
| } |
| } else { |
| need_help = true; |
| break; |
| } |
| } |
| |
| if (need_help) { |
| std::cout << argv[0] << " -s <matrix sizes> -c <cache sizes> -t <nb tries> -p <nb repeats>\n"; |
| std::cout << " <matrix sizes> : size\n"; |
| std::cout << " <matrix sizes> : rows columns depth\n"; |
| return 1; |
| } |
| |
| #if EIGEN_VERSION_AT_LEAST(3, 2, 90) |
| if (cache_size1 > 0) setCpuCacheSizes(cache_size1, cache_size2, cache_size3); |
| #endif |
| |
| A a(m, p); |
| a.setRandom(); |
| B b(p, n); |
| b.setRandom(); |
| C c(m, n); |
| c.setOnes(); |
| C rc = c; |
| |
| std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n"; |
| std::ptrdiff_t mc(m), nc(n), kc(p); |
| internal::computeProductBlockingSizes<Scalar, Scalar>(kc, mc, nc); |
| std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << " x " << nc << "\n"; |
| |
| C r = c; |
| |
| // check the parallel product is correct |
| #if defined EIGEN_HAS_OPENMP |
| Eigen::initParallel(); |
| int procs = omp_get_max_threads(); |
| if (procs > 1) { |
| #ifdef HAVE_BLAS |
| blas_gemm(a, b, r); |
| #else |
| omp_set_num_threads(1); |
| r.noalias() += a * b; |
| omp_set_num_threads(procs); |
| #endif |
| c.noalias() += a * b; |
| if (!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n"; |
| } |
| #elif defined HAVE_BLAS |
| blas_gemm(a, b, r); |
| c.noalias() += a * b; |
| if (!r.isApprox(c)) { |
| std::cout << (r - c).norm() / r.norm() << "\n"; |
| std::cerr << "Warning, your product is crap!\n\n"; |
| } |
| #else |
| if (1. * m * n * p < 2000. * 2000 * 2000) { |
| gemm(a, b, c); |
| r.noalias() += a.cast<Scalar>().lazyProduct(b.cast<Scalar>()); |
| if (!r.isApprox(c)) { |
| std::cout << (r - c).norm() / r.norm() << "\n"; |
| std::cerr << "Warning, your product is crap!\n\n"; |
| } |
| } |
| #endif |
| |
| #ifdef HAVE_BLAS |
| BenchTimer tblas; |
| c = rc; |
| BENCH(tblas, tries, rep, blas_gemm(a, b, c)); |
| std::cout << "blas cpu " << tblas.best(CPU_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / tblas.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tblas.total(CPU_TIMER) |
| << "s)\n"; |
| std::cout << "blas real " << tblas.best(REAL_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / tblas.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << tblas.total(REAL_TIMER) |
| << "s)\n"; |
| #endif |
| |
| // warm start |
| if (b.norm() + a.norm() == 123.554) std::cout << "\n"; |
| |
| BenchTimer tmt; |
| c = rc; |
| BENCH(tmt, tries, rep, gemm(a, b, c)); |
| std::cout << "eigen cpu " << tmt.best(CPU_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / tmt.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) |
| << "s)\n"; |
| std::cout << "eigen real " << tmt.best(REAL_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / tmt.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) |
| << "s)\n"; |
| |
| #ifdef EIGEN_HAS_OPENMP |
| if (procs > 1) { |
| BenchTimer tmono; |
| omp_set_num_threads(1); |
| Eigen::setNbThreads(1); |
| c = rc; |
| BENCH(tmono, tries, rep, gemm(a, b, c)); |
| std::cout << "eigen mono cpu " << tmono.best(CPU_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / tmono.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tmono.total(CPU_TIMER) |
| << "s)\n"; |
| std::cout << "eigen mono real " << tmono.best(REAL_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / tmono.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" |
| << tmono.total(REAL_TIMER) << "s)\n"; |
| std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER) << " => " |
| << (100.0 * tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER)) / procs << "%\n"; |
| } |
| #endif |
| |
| if (1. * m * n * p < 30 * 30 * 30) { |
| BenchTimer tmt; |
| c = rc; |
| BENCH(tmt, tries, rep, c.noalias() += a.lazyProduct(b)); |
| std::cout << "lazy cpu " << tmt.best(CPU_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / tmt.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) |
| << "s)\n"; |
| std::cout << "lazy real " << tmt.best(REAL_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / tmt.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) |
| << "s)\n"; |
| } |
| |
| #ifdef DECOUPLED |
| if ((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) { |
| M ar(m, p); |
| ar.setRandom(); |
| M ai(m, p); |
| ai.setRandom(); |
| M br(p, n); |
| br.setRandom(); |
| M bi(p, n); |
| bi.setRandom(); |
| M cr(m, n); |
| cr.setRandom(); |
| M ci(m, n); |
| ci.setRandom(); |
| |
| BenchTimer t; |
| BENCH(t, tries, rep, matlab_cplx_cplx(ar, ai, br, bi, cr, ci)); |
| std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) |
| << "s)\n"; |
| std::cout << "\"matlab\" real " << t.best(REAL_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) |
| << "s)\n"; |
| } |
| if ((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) { |
| M a(m, p); |
| a.setRandom(); |
| M br(p, n); |
| br.setRandom(); |
| M bi(p, n); |
| bi.setRandom(); |
| M cr(m, n); |
| cr.setRandom(); |
| M ci(m, n); |
| ci.setRandom(); |
| |
| BenchTimer t; |
| BENCH(t, tries, rep, matlab_real_cplx(a, br, bi, cr, ci)); |
| std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) |
| << "s)\n"; |
| std::cout << "\"matlab\" real " << t.best(REAL_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) |
| << "s)\n"; |
| } |
| if ((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex)) { |
| M ar(m, p); |
| ar.setRandom(); |
| M ai(m, p); |
| ai.setRandom(); |
| M b(p, n); |
| b.setRandom(); |
| M cr(m, n); |
| cr.setRandom(); |
| M ci(m, n); |
| ci.setRandom(); |
| |
| BenchTimer t; |
| BENCH(t, tries, rep, matlab_cplx_real(ar, ai, b, cr, ci)); |
| std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) |
| << "s)\n"; |
| std::cout << "\"matlab\" real " << t.best(REAL_TIMER) / rep << "s \t" |
| << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) |
| << "s)\n"; |
| } |
| #endif |
| |
| return 0; |
| } |