| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_INCOMPLETE_CHOlESKY_H |
| #define EIGEN_INCOMPLETE_CHOlESKY_H |
| #include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h" |
| #include <Eigen/OrderingMethods> |
| #include <list> |
| |
| namespace Eigen { |
| /** |
| * \brief Modified Incomplete Cholesky with dual threshold |
| * |
| * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with |
| * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 |
| * |
| * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric |
| * matrix. It is advised to give a row-oriented sparse matrix |
| * \tparam _UpLo The triangular part of the matrix to reference. |
| * \tparam _OrderingType |
| */ |
| |
| template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> > |
| class IncompleteCholesky : internal::noncopyable |
| { |
| public: |
| typedef SparseMatrix<Scalar,ColMajor> MatrixType; |
| typedef _OrderingType OrderingType; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; |
| typedef Matrix<Scalar,Dynamic,1> VectorType; |
| typedef Matrix<Index,Dynamic, 1> IndexType; |
| |
| public: |
| IncompleteCholesky() {} |
| IncompleteCholesky(const MatrixType& matrix) |
| { |
| compute(matrix); |
| } |
| |
| Index rows() const { return m_L.rows(); } |
| |
| Index cols() const { return m_L.cols(); } |
| |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was succesful, |
| * \c NumericalIssue if the matrix appears to be negative. |
| */ |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "IncompleteLLT is not initialized."); |
| return m_info; |
| } |
| /** |
| * \brief Computes the fill reducing permutation vector. |
| */ |
| template<typename MatrixType> |
| void analyzePattern(const MatrixType& mat) |
| { |
| OrderingType ord; |
| ord(mat, m_perm); |
| m_analysisIsOk = true; |
| } |
| |
| template<typename MatrixType> |
| void factorize(const MatrixType& amat); |
| |
| template<typename MatrixType> |
| void compute (const MatrixType& matrix) |
| { |
| analyzePattern(matrix); |
| factorize(matrix); |
| } |
| |
| template<typename Rhs, typename Dest> |
| void _solve(const Rhs& b, Dest& x) const |
| { |
| eigen_assert(m_factorizationIsOk && "factorize() should be called first"); |
| if (m_perm.rows() == b.rows()) |
| x = m_perm.inverse() * b; |
| else |
| x = b; |
| x = m_L.template triangularView<UnitLower>().solve(x); |
| x = m_L.adjoint().template triangularView<Upper>().solve(x); |
| if (m_perm.rows() == b.rows()) |
| x = m_perm * x; |
| } |
| template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs> |
| solve(const MatrixBase<Rhs>& b) const |
| { |
| eigen_assert(m_isInitialized && "IncompleteLLT is not initialized."); |
| eigen_assert(cols()==b.rows() |
| && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b"); |
| return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived()); |
| } |
| protected: |
| SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC |
| bool m_analysisIsOk; |
| bool m_factorizationIsOk; |
| bool m_isInitialized; |
| ComputationInfo m_info; |
| PermutationType m_perm; |
| |
| }; |
| |
| template<typename Scalar, int _UpLo, typename OrderingType> |
| template<typename _MatrixType> |
| void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat) |
| { |
| eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); |
| |
| // FIXME Stability: We should probably compute the scaling factors and the shifts that are needed to ensure an efficient LLT preconditioner. |
| |
| // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added |
| |
| // Apply the fill-reducing permutation computed in analyzePattern() |
| if (m_perm.rows() == mat.rows() ) |
| m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm); |
| else |
| m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>(); |
| |
| int n = mat.cols(); |
| |
| Scalar *vals = m_L.valuePtr(); //Values |
| Index *rowIdx = m_L.innerIndexPtr(); //Row indices |
| Index *colPtr = m_L.outerIndexPtr(); // Pointer to the beginning of each row |
| VectorType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization |
| // Initialize firstElt; |
| for (int j = 0; j < n-1; j++) firstElt(j) = colPtr[j]+1; |
| std::vector<std::list<Index> > listCol(n); // listCol(j) is a linked list of columns to update column j |
| VectorType curCol(n); // Store a nonzero values in each column |
| VectorType irow(n); // Row indices of nonzero elements in each column |
| // jki version of the Cholesky factorization |
| for (int j=0; j < n; j++) |
| { |
| //Left-looking factorize the column j |
| // First, load the jth column into curCol |
| Scalar diag = vals[colPtr[j]]; // Lower diagonal matrix with |
| curCol.setZero(); |
| irow.setLinSpaced(n,0,n-1); |
| for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++) |
| { |
| curCol(rowIdx[i]) = vals[i]; |
| irow(rowIdx[i]) = rowIdx[i]; |
| } |
| |
| std::list<int>::iterator k; |
| // Browse all previous columns that will update column j |
| for(k = listCol[j].begin(); k != listCol[j].end(); k++) |
| { |
| int jk = firstElt(*k); // First element to use in the column |
| Scalar a_jk = vals[jk]; |
| diag -= a_jk * a_jk; |
| jk += 1; |
| for (int i = jk; i < colPtr[*k]; i++) |
| { |
| curCol(rowIdx[i]) -= vals[i] * a_jk ; |
| } |
| firstElt(*k) = jk; |
| if (jk < colPtr[*k+1]) |
| { |
| // Add this column to the updating columns list for column *k+1 |
| listCol[rowIdx[jk]].push_back(*k); |
| } |
| } |
| |
| // Select the largest p elements |
| // p is the original number of elements in the column (without the diagonal) |
| int p = colPtr[j+1] - colPtr[j] - 2 ; |
| internal::QuickSplit(curCol, irow, p); |
| if(RealScalar(diag) <= 0) |
| { |
| m_info = NumericalIssue; |
| return; |
| } |
| RealScalar rdiag = internal::sqrt(RealScalar(diag)); |
| Scalar scal = Scalar(1)/rdiag; |
| vals[colPtr[j]] = rdiag; |
| // Insert the largest p elements in the matrix and scale them meanwhile |
| int cpt = 0; |
| for (int i = colPtr[j]+1; i < colPtr[j+1]; i++) |
| { |
| vals[i] = curCol(cpt) * scal; |
| rowIdx[i] = irow(cpt); |
| cpt ++; |
| } |
| } |
| m_factorizationIsOk = true; |
| m_isInitialized = true; |
| m_info = Success; |
| } |
| |
| namespace internal { |
| |
| template<typename _MatrixType, typename Rhs> |
| struct solve_retval<IncompleteCholesky<_MatrixType>, Rhs> |
| : solve_retval_base<IncompleteCholesky<_MatrixType>, Rhs> |
| { |
| typedef IncompleteCholesky<_MatrixType> Dec; |
| EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| dec()._solve(rhs(),dst); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif |