| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_PERMUTATIONMATRIX_H |
| #define EIGEN_PERMUTATIONMATRIX_H |
| |
| /** \class PermutationMatrix |
| * |
| * \brief Permutation matrix |
| * |
| * \param SizeAtCompileTime the number of rows/cols, or Dynamic |
| * \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. |
| * |
| * This class represents a permutation matrix, internally stored as a vector of integers. |
| * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix |
| * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have: |
| * \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f] |
| * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have: |
| * \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f] |
| * |
| * Permutation matrices are square and invertible. |
| * |
| * Notice that in addition to the member functions and operators listed here, there also are non-member |
| * operator* to multiply a PermutationMatrix with any kind of matrix expression (MatrixBase) on either side. |
| * |
| * \sa class DiagonalMatrix |
| */ |
| template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false> struct ei_permut_matrix_product_retval; |
| |
| template<int SizeAtCompileTime, int MaxSizeAtCompileTime> |
| struct ei_traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > |
| : ei_traits<Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> > |
| {}; |
| |
| template<int SizeAtCompileTime, int MaxSizeAtCompileTime> |
| class PermutationMatrix : public EigenBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > |
| { |
| public: |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typedef ei_traits<PermutationMatrix> Traits; |
| typedef Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> |
| DenseMatrixType; |
| enum { |
| Flags = Traits::Flags, |
| CoeffReadCost = Traits::CoeffReadCost, |
| RowsAtCompileTime = Traits::RowsAtCompileTime, |
| ColsAtCompileTime = Traits::ColsAtCompileTime, |
| MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = Traits::MaxColsAtCompileTime |
| }; |
| typedef typename Traits::Scalar Scalar; |
| typedef typename Traits::Index Index; |
| #endif |
| |
| typedef Matrix<int, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; |
| |
| inline PermutationMatrix() |
| {} |
| |
| /** Constructs an uninitialized permutation matrix of given size. |
| */ |
| inline PermutationMatrix(int size) : m_indices(size) |
| {} |
| |
| /** Copy constructor. */ |
| template<int OtherSize, int OtherMaxSize> |
| inline PermutationMatrix(const PermutationMatrix<OtherSize, OtherMaxSize>& other) |
| : m_indices(other.indices()) {} |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** Standard copy constructor. Defined only to prevent a default copy constructor |
| * from hiding the other templated constructor */ |
| inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {} |
| #endif |
| |
| /** Generic constructor from expression of the indices. The indices |
| * array has the meaning that the permutations sends each integer i to indices[i]. |
| * |
| * \warning It is your responsibility to check that the indices array that you passes actually |
| * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the |
| * array's size. |
| */ |
| template<typename Other> |
| explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices) |
| {} |
| |
| /** Convert the Transpositions \a tr to a permutation matrix */ |
| template<int OtherSize, int OtherMaxSize> |
| explicit PermutationMatrix(const Transpositions<OtherSize,OtherMaxSize>& tr) |
| : m_indices(tr.size()) |
| { |
| *this = tr; |
| } |
| |
| /** Copies the other permutation into *this */ |
| template<int OtherSize, int OtherMaxSize> |
| PermutationMatrix& operator=(const PermutationMatrix<OtherSize, OtherMaxSize>& other) |
| { |
| m_indices = other.indices(); |
| return *this; |
| } |
| |
| /** Assignment from the Transpositions \a tr */ |
| template<int OtherSize, int OtherMaxSize> |
| PermutationMatrix& operator=(const Transpositions<OtherSize,OtherMaxSize>& tr) |
| { |
| setIdentity(tr.size()); |
| for(Index k=size()-1; k>=0; --k) |
| applyTranspositionOnTheRight(k,tr.coeff(k)); |
| return *this; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| PermutationMatrix& operator=(const PermutationMatrix& other) |
| { |
| m_indices = other.m_indices; |
| return *this; |
| } |
| #endif |
| |
| /** \returns the number of rows */ |
| inline Index rows() const { return m_indices.size(); } |
| |
| /** \returns the number of columns */ |
| inline Index cols() const { return m_indices.size(); } |
| |
| /** \returns the size of a side of the respective square matrix, i.e., the number of indices */ |
| inline Index size() const { return m_indices.size(); } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename DenseDerived> |
| void evalTo(MatrixBase<DenseDerived>& other) const |
| { |
| other.setZero(); |
| for (int i=0; i<rows();++i) |
| other.coeffRef(m_indices.coeff(i),i) = typename DenseDerived::Scalar(1); |
| } |
| #endif |
| |
| /** \returns a Matrix object initialized from this permutation matrix. Notice that it |
| * is inefficient to return this Matrix object by value. For efficiency, favor using |
| * the Matrix constructor taking EigenBase objects. |
| */ |
| DenseMatrixType toDenseMatrix() const |
| { |
| return *this; |
| } |
| |
| /** const version of indices(). */ |
| const IndicesType& indices() const { return m_indices; } |
| /** \returns a reference to the stored array representing the permutation. */ |
| IndicesType& indices() { return m_indices; } |
| |
| /** Resizes to given size. |
| */ |
| inline void resize(Index size) |
| { |
| m_indices.resize(size); |
| } |
| |
| /** Sets *this to be the identity permutation matrix */ |
| void setIdentity() |
| { |
| for(Index i = 0; i < m_indices.size(); ++i) |
| m_indices.coeffRef(i) = i; |
| } |
| |
| /** Sets *this to be the identity permutation matrix of given size. |
| */ |
| void setIdentity(Index size) |
| { |
| resize(size); |
| setIdentity(); |
| } |
| |
| /** Multiplies *this by the transposition \f$(ij)\f$ on the left. |
| * |
| * \returns a reference to *this. |
| * |
| * \warning This is much slower than applyTranspositionOnTheRight(int,int): |
| * this has linear complexity and requires a lot of branching. |
| * |
| * \sa applyTranspositionOnTheRight(int,int) |
| */ |
| PermutationMatrix& applyTranspositionOnTheLeft(Index i, Index j) |
| { |
| ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size()); |
| for(Index k = 0; k < m_indices.size(); ++k) |
| { |
| if(m_indices.coeff(k) == i) m_indices.coeffRef(k) = j; |
| else if(m_indices.coeff(k) == j) m_indices.coeffRef(k) = i; |
| } |
| return *this; |
| } |
| |
| /** Multiplies *this by the transposition \f$(ij)\f$ on the right. |
| * |
| * \returns a reference to *this. |
| * |
| * This is a fast operation, it only consists in swapping two indices. |
| * |
| * \sa applyTranspositionOnTheLeft(int,int) |
| */ |
| PermutationMatrix& applyTranspositionOnTheRight(Index i, Index j) |
| { |
| ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size()); |
| std::swap(m_indices.coeffRef(i), m_indices.coeffRef(j)); |
| return *this; |
| } |
| |
| /** \returns the inverse permutation matrix. |
| * |
| * \note \note_try_to_help_rvo |
| */ |
| inline Transpose<PermutationMatrix> inverse() const |
| { return *this; } |
| /** \returns the tranpose permutation matrix. |
| * |
| * \note \note_try_to_help_rvo |
| */ |
| inline Transpose<PermutationMatrix> transpose() const |
| { return *this; } |
| |
| /**** multiplication helpers to hopefully get RVO ****/ |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<int OtherSize, int OtherMaxSize> |
| PermutationMatrix(const Transpose<PermutationMatrix<OtherSize,OtherMaxSize> >& other) |
| : m_indices(other.nestedPermutation().size()) |
| { |
| for (int i=0; i<rows();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i; |
| } |
| protected: |
| enum Product_t {Product}; |
| PermutationMatrix(Product_t, const PermutationMatrix& lhs, const PermutationMatrix& rhs) |
| : m_indices(lhs.m_indices.size()) |
| { |
| ei_assert(lhs.cols() == rhs.rows()); |
| for (int i=0; i<rows();++i) m_indices.coeffRef(i) = lhs.m_indices.coeff(rhs.m_indices.coeff(i)); |
| } |
| #endif |
| |
| public: |
| |
| /** \returns the product permutation matrix. |
| * |
| * \note \note_try_to_help_rvo |
| */ |
| template<int OtherSize, int OtherMaxSize> |
| inline PermutationMatrix operator*(const PermutationMatrix<OtherSize, OtherMaxSize>& other) const |
| { return PermutationMatrix(Product, *this, other); } |
| |
| /** \returns the product of a permutation with another inverse permutation. |
| * |
| * \note \note_try_to_help_rvo |
| */ |
| template<int OtherSize, int OtherMaxSize> |
| inline PermutationMatrix operator*(const Transpose<PermutationMatrix<OtherSize,OtherMaxSize> >& other) const |
| { return PermutationMatrix(Product, *this, other.eval()); } |
| |
| /** \returns the product of an inverse permutation with another permutation. |
| * |
| * \note \note_try_to_help_rvo |
| */ |
| template<int OtherSize, int OtherMaxSize> friend |
| inline PermutationMatrix operator*(const Transpose<PermutationMatrix<OtherSize,OtherMaxSize> >& other, const PermutationMatrix& perm) |
| { return PermutationMatrix(Product, other.eval(), perm); } |
| |
| protected: |
| |
| IndicesType m_indices; |
| }; |
| |
| /** \returns the matrix with the permutation applied to the columns. |
| */ |
| template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime> |
| inline const ei_permut_matrix_product_retval<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight> |
| operator*(const MatrixBase<Derived>& matrix, |
| const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation) |
| { |
| return ei_permut_matrix_product_retval |
| <PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight> |
| (permutation, matrix.derived()); |
| } |
| |
| /** \returns the matrix with the permutation applied to the rows. |
| */ |
| template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime> |
| inline const ei_permut_matrix_product_retval |
| <PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft> |
| operator*(const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation, |
| const MatrixBase<Derived>& matrix) |
| { |
| return ei_permut_matrix_product_retval |
| <PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft> |
| (permutation, matrix.derived()); |
| } |
| |
| template<typename PermutationType, typename MatrixType, int Side, bool Transposed> |
| struct ei_traits<ei_permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> > |
| { |
| typedef typename MatrixType::PlainObject ReturnType; |
| }; |
| |
| template<typename PermutationType, typename MatrixType, int Side, bool Transposed> |
| struct ei_permut_matrix_product_retval |
| : public ReturnByValue<ei_permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> > |
| { |
| typedef typename ei_cleantype<typename MatrixType::Nested>::type MatrixTypeNestedCleaned; |
| |
| ei_permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix) |
| : m_permutation(perm), m_matrix(matrix) |
| {} |
| |
| inline int rows() const { return m_matrix.rows(); } |
| inline int cols() const { return m_matrix.cols(); } |
| |
| template<typename Dest> inline void evalTo(Dest& dst) const |
| { |
| const int n = Side==OnTheLeft ? rows() : cols(); |
| |
| if(ei_is_same_type<MatrixTypeNestedCleaned,Dest>::ret && ei_extract_data(dst) == ei_extract_data(m_matrix)) |
| { |
| // apply the permutation inplace |
| Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size()); |
| mask.fill(false); |
| int r = 0; |
| while(r < m_permutation.size()) |
| { |
| // search for the next seed |
| while(r<m_permutation.size() && mask[r]) r++; |
| if(r>=m_permutation.size()) |
| break; |
| // we got one, let's follow it until we are back to the seed |
| int k0 = r++; |
| int kPrev = k0; |
| mask.coeffRef(k0) = true; |
| for(int k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k)) |
| { |
| Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k) |
| .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> |
| (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); |
| |
| mask.coeffRef(k) = true; |
| kPrev = k; |
| } |
| } |
| } |
| else |
| { |
| for(int i = 0; i < n; ++i) |
| { |
| Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> |
| (dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i) |
| |
| = |
| |
| Block<MatrixTypeNestedCleaned,Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime> |
| (m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i); |
| } |
| } |
| } |
| |
| protected: |
| const PermutationType& m_permutation; |
| const typename MatrixType::Nested m_matrix; |
| }; |
| |
| /* Template partial specialization for transposed/inverse permutations */ |
| |
| template<int SizeAtCompileTime, int MaxSizeAtCompileTime> |
| struct ei_traits<Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > > |
| : ei_traits<Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> > |
| {}; |
| |
| template<int SizeAtCompileTime, int MaxSizeAtCompileTime> |
| class Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > |
| : public EigenBase<Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > > |
| { |
| typedef PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> PermutationType; |
| typedef typename PermutationType::IndicesType IndicesType; |
| public: |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typedef ei_traits<PermutationType> Traits; |
| typedef Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> |
| DenseMatrixType; |
| enum { |
| Flags = Traits::Flags, |
| CoeffReadCost = Traits::CoeffReadCost, |
| RowsAtCompileTime = Traits::RowsAtCompileTime, |
| ColsAtCompileTime = Traits::ColsAtCompileTime, |
| MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = Traits::MaxColsAtCompileTime |
| }; |
| typedef typename Traits::Scalar Scalar; |
| #endif |
| |
| Transpose(const PermutationType& p) : m_permutation(p) {} |
| |
| inline int rows() const { return m_permutation.rows(); } |
| inline int cols() const { return m_permutation.cols(); } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename DenseDerived> |
| void evalTo(MatrixBase<DenseDerived>& other) const |
| { |
| other.setZero(); |
| for (int i=0; i<rows();++i) |
| other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1); |
| } |
| #endif |
| |
| /** \return the equivalent permutation matrix */ |
| PermutationType eval() const { return *this; } |
| |
| DenseMatrixType toDenseMatrix() const { return *this; } |
| |
| /** \returns the matrix with the inverse permutation applied to the columns. |
| */ |
| template<typename Derived> friend |
| inline const ei_permut_matrix_product_retval<PermutationType, Derived, OnTheRight, true> |
| operator*(const MatrixBase<Derived>& matrix, const Transpose& trPerm) |
| { |
| return ei_permut_matrix_product_retval<PermutationType, Derived, OnTheRight, true>(trPerm.m_permutation, matrix.derived()); |
| } |
| |
| /** \returns the matrix with the inverse permutation applied to the rows. |
| */ |
| template<typename Derived> |
| inline const ei_permut_matrix_product_retval<PermutationType, Derived, OnTheLeft, true> |
| operator*(const MatrixBase<Derived>& matrix) const |
| { |
| return ei_permut_matrix_product_retval<PermutationType, Derived, OnTheLeft, true>(m_permutation, matrix.derived()); |
| } |
| |
| const PermutationType& nestedPermutation() const { return m_permutation; } |
| |
| protected: |
| const PermutationType& m_permutation; |
| }; |
| |
| #endif // EIGEN_PERMUTATIONMATRIX_H |