blob: 012b74159b2114a705513a0d65995530788d1dd4 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSPOSITIONS_H
#define EIGEN_TRANSPOSITIONS_H
/** \class Transpositions
*
* \brief Represents a sequence of transpositions (row/column interchange)
*
* \param SizeAtCompileTime the number of transpositions, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
*
* This class represents a permutation transformation as a sequence of \em n transpositions
* \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
* Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
* the rows \c i and \c indices[i] of the matrix \c M.
* A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
*
* Compared to the class PermutationMatrix, such a sequence of transpositions is what is
* computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
*
* To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
* \code
* Transpositions tr;
* MatrixXf mat;
* mat = tr * mat;
* \endcode
* In this example, we detect that the matrix appears on both side, and so the transpositions
* are applied in-place without any temporary or extra copy.
*
* \sa class PermutationMatrix
*/
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed=false> struct ei_transposition_matrix_product_retval;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
class Transpositions
{
public:
typedef Matrix<DenseIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef typename IndicesType::Index Index;
inline Transpositions() {}
/** Copy constructor. */
template<int OtherSize, int OtherMaxSize>
inline Transpositions(const Transpositions<OtherSize, OtherMaxSize>& other)
: m_indices(other.indices()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Standard copy constructor. Defined only to prevent a default copy constructor
* from hiding the other templated constructor */
inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
#endif
/** Generic constructor from expression of the transposition indices. */
template<typename Other>
explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices)
{}
/** Copies the \a other transpositions into \c *this */
template<int OtherSize, int OtherMaxSize>
Transpositions& operator=(const Transpositions<OtherSize, OtherMaxSize>& other)
{
m_indices = other.indices();
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Transpositions& operator=(const Transpositions& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** Constructs an uninitialized permutation matrix of given size.
*/
inline Transpositions(Index size) : m_indices(size)
{}
/** \returns the number of transpositions */
inline Index size() const { return m_indices.size(); }
/** Direct access to the underlying index vector */
inline const Index& coeff(Index i) const { return m_indices.coeff(i); }
/** Direct access to the underlying index vector */
inline Index& coeffRef(Index i) { return m_indices.coeffRef(i); }
/** Direct access to the underlying index vector */
inline const Index& operator()(Index i) const { return m_indices(i); }
/** Direct access to the underlying index vector */
inline Index& operator()(Index i) { return m_indices(i); }
/** Direct access to the underlying index vector */
inline const Index& operator[](Index i) const { return m_indices(i); }
/** Direct access to the underlying index vector */
inline Index& operator[](Index i) { return m_indices(i); }
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
/** Resizes to given size. */
inline void resize(int size)
{
m_indices.resize(size);
}
/** Sets \c *this to represents an identity transformation */
void setIdentity()
{
for(int i = 0; i < m_indices.size(); ++i)
m_indices.coeffRef(i) = i;
}
// FIXME: do we want such methods ?
// might be usefull when the target matrix expression is complex, e.g.:
// object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
/*
template<typename MatrixType>
void applyForwardToRows(MatrixType& mat) const
{
for(Index k=0 ; k<size() ; ++k)
if(m_indices(k)!=k)
mat.row(k).swap(mat.row(m_indices(k)));
}
template<typename MatrixType>
void applyBackwardToRows(MatrixType& mat) const
{
for(Index k=size()-1 ; k>=0 ; --k)
if(m_indices(k)!=k)
mat.row(k).swap(mat.row(m_indices(k)));
}
*/
/** \returns the inverse transformation */
inline Transpose<Transpositions> inverse() const
{ return *this; }
/** \returns the tranpose transformation */
inline Transpose<Transpositions> transpose() const
{ return *this; }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<int OtherSize, int OtherMaxSize>
Transpositions(const Transpose<Transpositions<OtherSize,OtherMaxSize> >& other)
: m_indices(other.size())
{
Index n = size();
Index j = size-1;
for(Index i=0; i<n;++i,--j)
m_indices.coeffRef(j) = other.nestedTranspositions().indices().coeff(i);
}
#endif
protected:
IndicesType m_indices;
};
/** \returns the \a matrix with the \a transpositions applied to the columns.
*/
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
inline const ei_transposition_matrix_product_retval<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
operator*(const MatrixBase<Derived>& matrix,
const Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> &transpositions)
{
return ei_transposition_matrix_product_retval
<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
(transpositions, matrix.derived());
}
/** \returns the \a matrix with the \a transpositions applied to the rows.
*/
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
inline const ei_transposition_matrix_product_retval
<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
operator*(const Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> &transpositions,
const MatrixBase<Derived>& matrix)
{
return ei_transposition_matrix_product_retval
<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
(transpositions, matrix.derived());
}
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
struct ei_traits<ei_transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
{
typedef typename MatrixType::PlainObject ReturnType;
};
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
struct ei_transposition_matrix_product_retval
: public ReturnByValue<ei_transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
{
typedef typename ei_cleantype<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
typedef typename TranspositionType::Index Index;
ei_transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix)
: m_transpositions(tr), m_matrix(matrix)
{}
inline int rows() const { return m_matrix.rows(); }
inline int cols() const { return m_matrix.cols(); }
template<typename Dest> inline void evalTo(Dest& dst) const
{
const int size = m_transpositions.size();
Index j = 0;
if(!(ei_is_same_type<MatrixTypeNestedCleaned,Dest>::ret && ei_extract_data(dst) == ei_extract_data(m_matrix)))
dst = m_matrix;
for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
if((j=m_transpositions.coeff(k))!=k)
{
if(Side==OnTheLeft)
dst.row(k).swap(dst.row(j));
else if(Side==OnTheRight)
dst.col(k).swap(dst.col(j));
}
}
protected:
const TranspositionType& m_transpositions;
const typename MatrixType::Nested m_matrix;
};
/* Template partial specialization for transposed/inverse transpositions */
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
class Transpose<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> >
{
typedef Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> TranspositionType;
typedef typename TranspositionType::IndicesType IndicesType;
public:
Transpose(const TranspositionType& t) : m_transpositions(t) {}
inline int size() const { return m_transpositions.size(); }
/** \returns the \a matrix with the inverse transpositions applied to the columns.
*/
template<typename Derived> friend
inline const ei_transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>
operator*(const MatrixBase<Derived>& matrix, const Transpose& trt)
{
return ei_transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>(trt.m_transpositions, matrix.derived());
}
/** \returns the \a matrix with the inverse transpositions applied to the rows.
*/
template<typename Derived>
inline const ei_transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>
operator*(const MatrixBase<Derived>& matrix) const
{
return ei_transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>(m_transpositions, matrix.derived());
}
const TranspositionType& nestedTranspositions() const { return m_transpositions; }
protected:
const TranspositionType& m_transpositions;
};
#endif // EIGEN_TRANSPOSITIONS_H