| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Konstantinos Margaritis <markos@codex.gr> |
| // Heavily based on Gael's SSE version. |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_PACKET_MATH_NEON_H |
| #define EIGEN_PACKET_MATH_NEON_H |
| |
| #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD |
| #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 |
| #endif |
| |
| #ifndef EIGEN_TUNE_FOR_CPU_CACHE_SIZE |
| #define EIGEN_TUNE_FOR_CPU_CACHE_SIZE 4*192*192 |
| #endif |
| |
| // FIXME NEON has 16 quad registers, but since the current register allocator |
| // is so bad, it is much better to reduce it to 8 |
| #ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS |
| #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8 |
| #endif |
| |
| typedef float32x4_t Packet4f; |
| typedef int32x4_t Packet4i; |
| |
| #define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ |
| const Packet4f ei_p4f_##NAME = ei_pset1<float>(X) |
| |
| #define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ |
| const Packet4f ei_p4f_##NAME = vreinterpretq_f32_u32(ei_pset1<int>(X)) |
| |
| #define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ |
| const Packet4i ei_p4i_##NAME = ei_pset1<int>(X) |
| |
| #ifndef __pld |
| #define __pld(x) asm volatile ( " pld [%[addr]]\n" :: [addr] "r" (x) : "cc" ); |
| #endif |
| |
| template<> struct ei_packet_traits<float> : ei_default_packet_traits |
| { |
| typedef Packet4f type; enum {size=4}; |
| enum { |
| HasSin = 0, |
| HasCos = 0, |
| HasLog = 0, |
| HasExp = 0, |
| HasSqrt = 0 |
| }; |
| }; |
| template<> struct ei_packet_traits<int> : ei_default_packet_traits |
| { typedef Packet4i type; enum {size=4}; }; |
| |
| template<> struct ei_unpacket_traits<Packet4f> { typedef float type; enum {size=4}; }; |
| template<> struct ei_unpacket_traits<Packet4i> { typedef int type; enum {size=4}; }; |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pset1<float>(const float& from) { return vdupq_n_f32(from); } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pset1<int>(const int& from) { return vdupq_n_s32(from); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_plset<float>(const float& a) |
| { |
| Packet4f countdown = { 3, 2, 1, 0 }; |
| return vaddq_f32(ei_pset1(a), countdown); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_plset<int>(const int& a) |
| { |
| Packet4i countdown = { 3, 2, 1, 0 }; |
| return vaddq_s32(ei_pset1(a), countdown); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pnegate(const Packet4f& a) { return vnegq_f32(a); } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pnegate(const Packet4i& a) { return vnegq_s32(a); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pdiv<Packet4f>(const Packet4f& a, const Packet4f& b) |
| { |
| Packet4f inv, restep, div; |
| |
| // NEON does not offer a divide instruction, we have to do a reciprocal approximation |
| // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers |
| // a reciprocal estimate AND a reciprocal step -which saves a few instructions |
| // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with |
| // Newton-Raphson and vrecpsq_f32() |
| inv = vrecpeq_f32(b); |
| |
| // This returns a differential, by which we will have to multiply inv to get a better |
| // approximation of 1/b. |
| restep = vrecpsq_f32(b, inv); |
| inv = vmulq_f32(restep, inv); |
| |
| // Finally, multiply a by 1/b and get the wanted result of the division. |
| div = vmulq_f32(a, inv); |
| |
| return div; |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/) |
| { ei_assert(false && "packet integer division are not supported by NEON"); |
| return ei_pset1<int>(0); |
| } |
| |
| // for some weird raisons, it has to be overloaded for packet of integers |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return ei_padd(ei_pmul(a,b), c); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); } |
| |
| // Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pand<Packet4f>(const Packet4f& a, const Packet4f& b) |
| { |
| return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_por<Packet4f>(const Packet4f& a, const Packet4f& b) |
| { |
| return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pxor<Packet4f>(const Packet4f& a, const Packet4f& b) |
| { |
| return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) |
| { |
| return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pload<float>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pload<int>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_ploadu(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_ploadu(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); } |
| |
| template<> EIGEN_STRONG_INLINE void ei_pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); } |
| template<> EIGEN_STRONG_INLINE void ei_pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); } |
| |
| template<> EIGEN_STRONG_INLINE void ei_pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); } |
| template<> EIGEN_STRONG_INLINE void ei_pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); } |
| |
| template<> EIGEN_STRONG_INLINE void ei_prefetch<float>(const float* addr) { __pld(addr); } |
| template<> EIGEN_STRONG_INLINE void ei_prefetch<int>(const int* addr) { __pld(addr); } |
| |
| // FIXME only store the 2 first elements ? |
| template<> EIGEN_STRONG_INLINE float ei_pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; } |
| template<> EIGEN_STRONG_INLINE int ei_pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_preverse(const Packet4f& a) { |
| float32x2_t a_lo, a_hi; |
| Packet4f a_r64, a_r128; |
| |
| a_r64 = vrev64q_f32(a); |
| a_lo = vget_low_f32(a_r64); |
| a_hi = vget_high_f32(a_r64); |
| a_r128 = vcombine_f32(a_hi, a_lo); |
| |
| return a_r128; |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_preverse(const Packet4i& a) { |
| int32x2_t a_lo, a_hi; |
| Packet4i a_r64, a_r128; |
| |
| a_r64 = vrev64q_s32(a); |
| a_lo = vget_low_s32(a_r64); |
| a_hi = vget_high_s32(a_r64); |
| a_r128 = vcombine_s32(a_hi, a_lo); |
| |
| return a_r128; |
| } |
| template<> EIGEN_STRONG_INLINE Packet4f ei_pabs(const Packet4f& a) { return vabsq_f32(a); } |
| template<> EIGEN_STRONG_INLINE Packet4i ei_pabs(const Packet4i& a) { return vabsq_s32(a); } |
| |
| template<> EIGEN_STRONG_INLINE float ei_predux<Packet4f>(const Packet4f& a) |
| { |
| float32x2_t a_lo, a_hi, sum; |
| float s[2]; |
| |
| a_lo = vget_low_f32(a); |
| a_hi = vget_high_f32(a); |
| sum = vpadd_f32(a_lo, a_hi); |
| sum = vpadd_f32(sum, sum); |
| vst1_f32(s, sum); |
| |
| return s[0]; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ei_preduxp<Packet4f>(const Packet4f* vecs) |
| { |
| float32x4x2_t vtrn1, vtrn2, res1, res2; |
| Packet4f sum1, sum2, sum; |
| |
| // NEON zip performs interleaving of the supplied vectors. |
| // We perform two interleaves in a row to acquire the transposed vector |
| vtrn1 = vzipq_f32(vecs[0], vecs[2]); |
| vtrn2 = vzipq_f32(vecs[1], vecs[3]); |
| res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]); |
| res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]); |
| |
| // Do the addition of the resulting vectors |
| sum1 = vaddq_f32(res1.val[0], res1.val[1]); |
| sum2 = vaddq_f32(res2.val[0], res2.val[1]); |
| sum = vaddq_f32(sum1, sum2); |
| |
| return sum; |
| } |
| |
| template<> EIGEN_STRONG_INLINE int ei_predux<Packet4i>(const Packet4i& a) |
| { |
| int32x2_t a_lo, a_hi, sum; |
| int32_t s[2]; |
| |
| a_lo = vget_low_s32(a); |
| a_hi = vget_high_s32(a); |
| sum = vpadd_s32(a_lo, a_hi); |
| sum = vpadd_s32(sum, sum); |
| vst1_s32(s, sum); |
| |
| return s[0]; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4i ei_preduxp<Packet4i>(const Packet4i* vecs) |
| { |
| int32x4x2_t vtrn1, vtrn2, res1, res2; |
| Packet4i sum1, sum2, sum; |
| |
| // NEON zip performs interleaving of the supplied vectors. |
| // We perform two interleaves in a row to acquire the transposed vector |
| vtrn1 = vzipq_s32(vecs[0], vecs[2]); |
| vtrn2 = vzipq_s32(vecs[1], vecs[3]); |
| res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]); |
| res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]); |
| |
| // Do the addition of the resulting vectors |
| sum1 = vaddq_s32(res1.val[0], res1.val[1]); |
| sum2 = vaddq_s32(res2.val[0], res2.val[1]); |
| sum = vaddq_s32(sum1, sum2); |
| |
| return sum; |
| } |
| |
| // Other reduction functions: |
| // mul |
| template<> EIGEN_STRONG_INLINE float ei_predux_mul<Packet4f>(const Packet4f& a) |
| { |
| float32x2_t a_lo, a_hi, prod; |
| float s[2]; |
| |
| // Get a_lo = |a1|a2| and a_hi = |a3|a4| |
| a_lo = vget_low_f32(a); |
| a_hi = vget_high_f32(a); |
| // Get the product of a_lo * a_hi -> |a1*a3|a2*a4| |
| prod = vmul_f32(a_lo, a_hi); |
| // Multiply prod with its swapped value |a2*a4|a1*a3| |
| prod = vmul_f32(prod, vrev64_f32(prod)); |
| vst1_f32(s, prod); |
| |
| return s[0]; |
| } |
| template<> EIGEN_STRONG_INLINE int ei_predux_mul<Packet4i>(const Packet4i& a) |
| { |
| int32x2_t a_lo, a_hi, prod; |
| int32_t s[2]; |
| |
| // Get a_lo = |a1|a2| and a_hi = |a3|a4| |
| a_lo = vget_low_s32(a); |
| a_hi = vget_high_s32(a); |
| // Get the product of a_lo * a_hi -> |a1*a3|a2*a4| |
| prod = vmul_s32(a_lo, a_hi); |
| // Multiply prod with its swapped value |a2*a4|a1*a3| |
| prod = vmul_s32(prod, vrev64_s32(prod)); |
| vst1_s32(s, prod); |
| |
| return s[0]; |
| } |
| |
| // min |
| template<> EIGEN_STRONG_INLINE float ei_predux_min<Packet4f>(const Packet4f& a) |
| { |
| float32x2_t a_lo, a_hi, min; |
| float s[2]; |
| |
| a_lo = vget_low_f32(a); |
| a_hi = vget_high_f32(a); |
| min = vpmin_f32(a_lo, a_hi); |
| min = vpmin_f32(min, min); |
| vst1_f32(s, min); |
| |
| return s[0]; |
| } |
| template<> EIGEN_STRONG_INLINE int ei_predux_min<Packet4i>(const Packet4i& a) |
| { |
| int32x2_t a_lo, a_hi, min; |
| int32_t s[2]; |
| |
| a_lo = vget_low_s32(a); |
| a_hi = vget_high_s32(a); |
| min = vpmin_s32(a_lo, a_hi); |
| min = vpmin_s32(min, min); |
| vst1_s32(s, min); |
| |
| return s[0]; |
| } |
| |
| // max |
| template<> EIGEN_STRONG_INLINE float ei_predux_max<Packet4f>(const Packet4f& a) |
| { |
| float32x2_t a_lo, a_hi, max; |
| float s[2]; |
| |
| a_lo = vget_low_f32(a); |
| a_hi = vget_high_f32(a); |
| max = vpmax_f32(a_lo, a_hi); |
| max = vpmax_f32(max, max); |
| vst1_f32(s, max); |
| |
| return s[0]; |
| } |
| template<> EIGEN_STRONG_INLINE int ei_predux_max<Packet4i>(const Packet4i& a) |
| { |
| int32x2_t a_lo, a_hi, max; |
| int32_t s[2]; |
| |
| a_lo = vget_low_s32(a); |
| a_hi = vget_high_s32(a); |
| max = vpmax_s32(a_lo, a_hi); |
| max = vpmax_s32(max, max); |
| vst1_s32(s, max); |
| |
| return s[0]; |
| } |
| |
| template<int Offset> |
| struct ei_palign_impl<Offset,Packet4f> |
| { |
| EIGEN_STRONG_INLINE static void run(Packet4f& first, const Packet4f& second) |
| { |
| if (Offset!=0) |
| first = vextq_f32(first, second, Offset); |
| } |
| }; |
| |
| template<int Offset> |
| struct ei_palign_impl<Offset,Packet4i> |
| { |
| EIGEN_STRONG_INLINE static void run(Packet4i& first, const Packet4i& second) |
| { |
| if (Offset!=0) |
| first = vextq_s32(first, second, Offset); |
| } |
| }; |
| #endif // EIGEN_PACKET_MATH_NEON_H |