| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_META_H |
| #define EIGEN_META_H |
| |
| /** \internal |
| * \file Meta.h |
| * This file contains generic metaprogramming classes which are not specifically related to Eigen. |
| * \note In case you wonder, yes we're aware that Boost already provides all these features, |
| * we however don't want to add a dependency to Boost. |
| */ |
| |
| struct ei_meta_true { enum { ret = 1 }; }; |
| struct ei_meta_false { enum { ret = 0 }; }; |
| |
| template<bool Condition, typename Then, typename Else> |
| struct ei_meta_if { typedef Then ret; }; |
| |
| template<typename Then, typename Else> |
| struct ei_meta_if <false, Then, Else> { typedef Else ret; }; |
| |
| template<typename T, typename U> struct ei_is_same_type { enum { ret = 0 }; }; |
| template<typename T> struct ei_is_same_type<T,T> { enum { ret = 1 }; }; |
| |
| template<typename T> struct ei_unref { typedef T type; }; |
| template<typename T> struct ei_unref<T&> { typedef T type; }; |
| |
| template<typename T> struct ei_unpointer { typedef T type; }; |
| template<typename T> struct ei_unpointer<T*> { typedef T type; }; |
| template<typename T> struct ei_unpointer<T*const> { typedef T type; }; |
| |
| template<typename T> struct ei_unconst { typedef T type; }; |
| template<typename T> struct ei_unconst<const T> { typedef T type; }; |
| template<typename T> struct ei_unconst<T const &> { typedef T & type; }; |
| template<typename T> struct ei_unconst<T const *> { typedef T * type; }; |
| |
| template<typename T> struct ei_cleantype { typedef T type; }; |
| template<typename T> struct ei_cleantype<const T> { typedef typename ei_cleantype<T>::type type; }; |
| template<typename T> struct ei_cleantype<const T&> { typedef typename ei_cleantype<T>::type type; }; |
| template<typename T> struct ei_cleantype<T&> { typedef typename ei_cleantype<T>::type type; }; |
| template<typename T> struct ei_cleantype<const T*> { typedef typename ei_cleantype<T>::type type; }; |
| template<typename T> struct ei_cleantype<T*> { typedef typename ei_cleantype<T>::type type; }; |
| |
| template<typename T> struct ei_makeconst { typedef const T type; }; |
| template<typename T> struct ei_makeconst<const T> { typedef const T type; }; |
| template<typename T> struct ei_makeconst<T&> { typedef const T& type; }; |
| template<typename T> struct ei_makeconst<const T&> { typedef const T& type; }; |
| template<typename T> struct ei_makeconst<T*> { typedef const T* type; }; |
| template<typename T> struct ei_makeconst<const T*> { typedef const T* type; }; |
| |
| /** \internal Allows to enable/disable an overload |
| * according to a compile time condition. |
| */ |
| template<bool Condition, typename T> struct ei_enable_if; |
| |
| template<typename T> struct ei_enable_if<true,T> |
| { typedef T type; }; |
| |
| /** \internal |
| * Convenient struct to get the result type of a unary or binary functor. |
| * |
| * It supports both the current STL mechanism (using the result_type member) as well as |
| * upcoming next STL generation (using a templated result member). |
| * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack. |
| */ |
| template<typename T> struct ei_result_of {}; |
| |
| struct ei_has_none {int a[1];}; |
| struct ei_has_std_result_type {int a[2];}; |
| struct ei_has_tr1_result {int a[3];}; |
| |
| template<typename Func, typename ArgType, int SizeOf=sizeof(ei_has_none)> |
| struct ei_unary_result_of_select {typedef ArgType type;}; |
| |
| template<typename Func, typename ArgType> |
| struct ei_unary_result_of_select<Func, ArgType, sizeof(ei_has_std_result_type)> {typedef typename Func::result_type type;}; |
| |
| template<typename Func, typename ArgType> |
| struct ei_unary_result_of_select<Func, ArgType, sizeof(ei_has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;}; |
| |
| template<typename Func, typename ArgType> |
| struct ei_result_of<Func(ArgType)> { |
| template<typename T> |
| static ei_has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); |
| template<typename T> |
| static ei_has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0); |
| static ei_has_none testFunctor(...); |
| |
| // note that the following indirection is needed for gcc-3.3 |
| enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; |
| typedef typename ei_unary_result_of_select<Func, ArgType, FunctorType>::type type; |
| }; |
| |
| template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(ei_has_none)> |
| struct ei_binary_result_of_select {typedef ArgType0 type;}; |
| |
| template<typename Func, typename ArgType0, typename ArgType1> |
| struct ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(ei_has_std_result_type)> |
| {typedef typename Func::result_type type;}; |
| |
| template<typename Func, typename ArgType0, typename ArgType1> |
| struct ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(ei_has_tr1_result)> |
| {typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;}; |
| |
| template<typename Func, typename ArgType0, typename ArgType1> |
| struct ei_result_of<Func(ArgType0,ArgType1)> { |
| template<typename T> |
| static ei_has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); |
| template<typename T> |
| static ei_has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0); |
| static ei_has_none testFunctor(...); |
| |
| // note that the following indirection is needed for gcc-3.3 |
| enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; |
| typedef typename ei_binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type; |
| }; |
| |
| /** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. |
| * Usage example: \code ei_meta_sqrt<1023>::ret \endcode |
| */ |
| template<int Y, |
| int InfX = 0, |
| int SupX = ((Y==1) ? 1 : Y/2), |
| bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) > |
| // use ?: instead of || just to shut up a stupid gcc 4.3 warning |
| class ei_meta_sqrt |
| { |
| enum { |
| MidX = (InfX+SupX)/2, |
| TakeInf = MidX*MidX > Y ? 1 : 0, |
| NewInf = int(TakeInf) ? InfX : int(MidX), |
| NewSup = int(TakeInf) ? int(MidX) : SupX |
| }; |
| public: |
| enum { ret = ei_meta_sqrt<Y,NewInf,NewSup>::ret }; |
| }; |
| |
| template<int Y, int InfX, int SupX> |
| class ei_meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; |
| |
| /** \internal determines whether the product of two numeric types is allowed and what the return type is */ |
| template<typename T, typename U> struct ei_scalar_product_traits; |
| |
| template<typename T> struct ei_scalar_product_traits<T,T> |
| { |
| //enum { Cost = NumTraits<T>::MulCost }; |
| typedef T ReturnType; |
| }; |
| |
| template<typename T> struct ei_scalar_product_traits<T,std::complex<T> > |
| { |
| //enum { Cost = 2*NumTraits<T>::MulCost }; |
| typedef std::complex<T> ReturnType; |
| }; |
| |
| template<typename T> struct ei_scalar_product_traits<std::complex<T>, T> |
| { |
| //enum { Cost = 2*NumTraits<T>::MulCost }; |
| typedef std::complex<T> ReturnType; |
| }; |
| |
| // FIXME quick workaround around current limitation of ei_result_of |
| template<typename Scalar, typename ArgType0, typename ArgType1> |
| struct ei_result_of<ei_scalar_product_op<Scalar>(ArgType0,ArgType1)> { |
| typedef typename ei_scalar_product_traits<typename ei_cleantype<ArgType0>::type, typename ei_cleantype<ArgType1>::type>::ReturnType type; |
| }; |
| |
| template<typename T> struct ei_is_diagonal |
| { enum { ret = false }; }; |
| |
| template<typename T> struct ei_is_diagonal<DiagonalBase<T> > |
| { enum { ret = true }; }; |
| |
| template<typename T> struct ei_is_diagonal<DiagonalWrapper<T> > |
| { enum { ret = true }; }; |
| |
| template<typename T, int S> struct ei_is_diagonal<DiagonalMatrix<T,S> > |
| { enum { ret = true }; }; |
| |
| template<bool Conjugate> struct ei_conj_if; |
| |
| template<> struct ei_conj_if<true> { |
| template<typename T> |
| inline T operator()(const T& x) { return ei_conj(x); } |
| }; |
| |
| template<> struct ei_conj_if<false> { |
| template<typename T> |
| inline const T& operator()(const T& x) { return x; } |
| }; |
| |
| #endif // EIGEN_META_H |