blob: 49a0d8f5d19e902d61771d47d68a939cde9b3d9a [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_JACOBI_H
#define EIGEN_JACOBI_H
/** \ingroup Jacobi_Module
* \jacobi_module
* \class PlanarRotation
* \brief Represents a rotation in the plane from a cosine-sine pair.
*
* This class represents a Jacobi or Givens rotation.
* This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by
* its cosine \c c and sine \c s as follow:
* \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$
*
* You can apply the respective counter-clockwise rotation to a column vector \c v by
* applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code:
* \code
* v.applyOnTheLeft(J.adjoint());
* \endcode
*
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
template<typename Scalar> class PlanarRotation
{
public:
typedef typename NumTraits<Scalar>::Real RealScalar;
/** Default constructor without any initialization. */
PlanarRotation() {}
/** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
PlanarRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
Scalar& c() { return m_c; }
Scalar c() const { return m_c; }
Scalar& s() { return m_s; }
Scalar s() const { return m_s; }
/** Concatenates two planar rotation */
PlanarRotation operator*(const PlanarRotation& other)
{
return PlanarRotation(m_c * other.m_c - ei_conj(m_s) * other.m_s,
ei_conj(m_c * ei_conj(other.m_s) + ei_conj(m_s) * ei_conj(other.m_c)));
}
/** Returns the transposed transformation */
PlanarRotation transpose() const { return PlanarRotation(m_c, -ei_conj(m_s)); }
/** Returns the adjoint transformation */
PlanarRotation adjoint() const { return PlanarRotation(ei_conj(m_c), -m_s); }
template<typename Derived>
bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q);
bool makeJacobi(RealScalar x, Scalar y, RealScalar z);
void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0);
protected:
void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, ei_meta_true);
void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, ei_meta_false);
Scalar m_c, m_s;
};
/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix
* \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$
*
* \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
template<typename Scalar>
bool PlanarRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z)
{
typedef typename NumTraits<Scalar>::Real RealScalar;
if(y == Scalar(0))
{
m_c = Scalar(1);
m_s = Scalar(0);
return false;
}
else
{
RealScalar tau = (x-z)/(RealScalar(2)*ei_abs(y));
RealScalar w = ei_sqrt(ei_abs2(tau) + 1);
RealScalar t;
if(tau>0)
{
t = RealScalar(1) / (tau + w);
}
else
{
t = RealScalar(1) / (tau - w);
}
RealScalar sign_t = t > 0 ? 1 : -1;
RealScalar n = RealScalar(1) / ei_sqrt(ei_abs2(t)+1);
m_s = - sign_t * (ei_conj(y) / ei_abs(y)) * ei_abs(t) * n;
m_c = n;
return true;
}
}
/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix
* \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields
* a diagonal matrix \f$ A = J^* B J \f$
*
* Example: \include Jacobi_makeJacobi.cpp
* Output: \verbinclude Jacobi_makeJacobi.out
*
* \sa PlanarRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
template<typename Scalar>
template<typename Derived>
inline bool PlanarRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q)
{
return makeJacobi(ei_real(m.coeff(p,p)), m.coeff(p,q), ei_real(m.coeff(q,q)));
}
/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector
* \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields:
* \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$.
*
* The value of \a z is returned if \a z is not null (the default is null).
* Also note that G is built such that the cosine is always real.
*
* Example: \include Jacobi_makeGivens.cpp
* Output: \verbinclude Jacobi_makeGivens.out
*
* This function implements the continuous Givens rotation generation algorithm
* found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem.
* LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
*
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
template<typename Scalar>
void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
{
makeGivens(p, q, z, typename ei_meta_if<NumTraits<Scalar>::IsComplex, ei_meta_true, ei_meta_false>::ret());
}
// specialization for complexes
template<typename Scalar>
void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, ei_meta_true)
{
if(q==Scalar(0))
{
m_c = ei_real(p)<0 ? Scalar(-1) : Scalar(1);
m_s = 0;
if(r) *r = m_c * p;
}
else if(p==Scalar(0))
{
m_c = 0;
m_s = -q/ei_abs(q);
if(r) *r = ei_abs(q);
}
else
{
RealScalar p1 = ei_norm1(p);
RealScalar q1 = ei_norm1(q);
if(p1>=q1)
{
Scalar ps = p / p1;
RealScalar p2 = ei_abs2(ps);
Scalar qs = q / p1;
RealScalar q2 = ei_abs2(qs);
RealScalar u = ei_sqrt(RealScalar(1) + q2/p2);
if(ei_real(p)<RealScalar(0))
u = -u;
m_c = Scalar(1)/u;
m_s = -qs*ei_conj(ps)*(m_c/p2);
if(r) *r = p * u;
}
else
{
Scalar ps = p / q1;
RealScalar p2 = ei_abs2(ps);
Scalar qs = q / q1;
RealScalar q2 = ei_abs2(qs);
RealScalar u = q1 * ei_sqrt(p2 + q2);
if(ei_real(p)<RealScalar(0))
u = -u;
p1 = ei_abs(p);
ps = p/p1;
m_c = p1/u;
m_s = -ei_conj(ps) * (q/u);
if(r) *r = ps * u;
}
}
}
// specialization for reals
template<typename Scalar>
void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, ei_meta_false)
{
if(q==0)
{
m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
m_s = 0;
if(r) *r = ei_abs(p);
}
else if(p==0)
{
m_c = 0;
m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
if(r) *r = ei_abs(q);
}
else if(ei_abs(p) > ei_abs(q))
{
Scalar t = q/p;
Scalar u = ei_sqrt(Scalar(1) + ei_abs2(t));
if(p<Scalar(0))
u = -u;
m_c = Scalar(1)/u;
m_s = -t * m_c;
if(r) *r = p * u;
}
else
{
Scalar t = p/q;
Scalar u = ei_sqrt(Scalar(1) + ei_abs2(t));
if(q<Scalar(0))
u = -u;
m_s = -Scalar(1)/u;
m_c = -t * m_s;
if(r) *r = q * u;
}
}
/****************************************************************************************
* Implementation of MatrixBase methods
****************************************************************************************/
/** \jacobi_module
* Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
* \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
*
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
template<typename VectorX, typename VectorY, typename OtherScalar>
void ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const PlanarRotation<OtherScalar>& j);
/** \jacobi_module
* Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
* with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
*
* \sa class PlanarRotation, MatrixBase::applyOnTheRight(), ei_apply_rotation_in_the_plane()
*/
template<typename Derived>
template<typename OtherScalar>
inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const PlanarRotation<OtherScalar>& j)
{
RowXpr x(this->row(p));
RowXpr y(this->row(q));
ei_apply_rotation_in_the_plane(x, y, j);
}
/** \ingroup Jacobi_Module
* Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
* with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
*
* \sa class PlanarRotation, MatrixBase::applyOnTheLeft(), ei_apply_rotation_in_the_plane()
*/
template<typename Derived>
template<typename OtherScalar>
inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const PlanarRotation<OtherScalar>& j)
{
ColXpr x(this->col(p));
ColXpr y(this->col(q));
ei_apply_rotation_in_the_plane(x, y, j.transpose());
}
template<typename VectorX, typename VectorY, typename OtherScalar>
void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const PlanarRotation<OtherScalar>& j)
{
typedef typename VectorX::Index Index;
typedef typename VectorX::Scalar Scalar;
ei_assert(_x.size() == _y.size());
Index size = _x.size();
Index incrx = size ==1 ? 1 : &_x.coeffRef(1) - &_x.coeffRef(0);
Index incry = size ==1 ? 1 : &_y.coeffRef(1) - &_y.coeffRef(0);
Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0);
Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0);
if((VectorX::Flags & VectorY::Flags & PacketAccessBit) && incrx==1 && incry==1)
{
// both vectors are sequentially stored in memory => vectorization
typedef typename ei_packet_traits<Scalar>::type Packet;
enum { PacketSize = ei_packet_traits<Scalar>::size, Peeling = 2 };
Index alignedStart = ei_first_aligned(y, size);
Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
const Packet pc = ei_pset1(Scalar(j.c()));
const Packet ps = ei_pset1(Scalar(j.s()));
ei_conj_helper<NumTraits<Scalar>::IsComplex,false> cj;
for(Index i=0; i<alignedStart; ++i)
{
Scalar xi = x[i];
Scalar yi = y[i];
x[i] = j.c() * xi + ei_conj(j.s()) * yi;
y[i] = -j.s() * xi + ei_conj(j.c()) * yi;
}
Scalar* px = x + alignedStart;
Scalar* py = y + alignedStart;
if(ei_first_aligned(x, size)==alignedStart)
{
for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
{
Packet xi = ei_pload(px);
Packet yi = ei_pload(py);
ei_pstore(px, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi)));
ei_pstore(py, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi)));
px += PacketSize;
py += PacketSize;
}
}
else
{
Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
{
Packet xi = ei_ploadu(px);
Packet xi1 = ei_ploadu(px+PacketSize);
Packet yi = ei_pload (py);
Packet yi1 = ei_pload (py+PacketSize);
ei_pstoreu(px, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi)));
ei_pstoreu(px+PacketSize, ei_padd(ei_pmul(pc,xi1),cj.pmul(ps,yi1)));
ei_pstore (py, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi)));
ei_pstore (py+PacketSize, ei_psub(ei_pmul(pc,yi1),ei_pmul(ps,xi1)));
px += Peeling*PacketSize;
py += Peeling*PacketSize;
}
if(alignedEnd!=peelingEnd)
{
Packet xi = ei_ploadu(x+peelingEnd);
Packet yi = ei_pload (y+peelingEnd);
ei_pstoreu(x+peelingEnd, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi)));
ei_pstore (y+peelingEnd, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi)));
}
}
for(Index i=alignedEnd; i<size; ++i)
{
Scalar xi = x[i];
Scalar yi = y[i];
x[i] = j.c() * xi + ei_conj(j.s()) * yi;
y[i] = -j.s() * xi + ei_conj(j.c()) * yi;
}
}
else
{
for(Index i=0; i<size; ++i)
{
Scalar xi = *x;
Scalar yi = *y;
*x = j.c() * xi + ei_conj(j.s()) * yi;
*y = -j.s() * xi + ei_conj(j.c()) * yi;
x += incrx;
y += incry;
}
}
}
#endif // EIGEN_JACOBI_H