| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "common.h" |
| |
| int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc) |
| { |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| |
| if(beta!=Scalar(1)) |
| vector(c, *m, *incc) *= beta; |
| |
| if(OP(*opa)==NOTR) |
| if(*incc==1) |
| vector(c,*m) += alpha * matrix(a,*m,*n,*lda) * vector(b,*n,*incb); |
| else |
| vector(c,*m,*incc) += alpha * matrix(a,*m,*n,*lda) * vector(b,*n,*incb); |
| else if(OP(*opa)==TR) |
| if(*incb==1) |
| vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).transpose() * vector(b,*n); |
| else |
| vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).transpose() * vector(b,*n,*incb); |
| else if(OP(*opa)==TR) |
| if(*incb==1) |
| vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).adjoint() * vector(b,*n); |
| else |
| vector(c,*m,*incc) += alpha * matrix(a,*n,*m,*lda).adjoint() * vector(b,*n,*incb); |
| else |
| return 0; |
| |
| return 1; |
| } |
| |
| |
| int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) |
| { |
| return 0; |
| |
| typedef void (*functype)(int, const Scalar *, int, Scalar *, int); |
| functype func[16]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<16; ++k) |
| func[k] = 0; |
| |
| // func[NOTR | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|0, false,ColMajor,ColMajor>::run); |
| // func[TR | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|0, false,RowMajor,ColMajor>::run); |
| // func[ADJ | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|0, Conj, RowMajor,ColMajor>::run); |
| // |
| // func[NOTR | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|0, false,ColMajor,ColMajor>::run); |
| // func[TR | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|0, false,RowMajor,ColMajor>::run); |
| // func[ADJ | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|0, Conj, RowMajor,ColMajor>::run); |
| // |
| // func[NOTR | (UP << 3) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|UnitDiagBit,false,ColMajor,ColMajor>::run); |
| // func[TR | (UP << 2) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|UnitDiagBit,false,RowMajor,ColMajor>::run); |
| // func[ADJ | (UP << 2) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|UnitDiagBit,Conj, RowMajor,ColMajor>::run); |
| // |
| // func[NOTR | (LO << 2) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|UnitDiagBit,false,ColMajor,ColMajor>::run); |
| // func[TR | (LO << 2) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|UnitDiagBit,false,RowMajor,ColMajor>::run); |
| // func[ADJ | (LO << 2) | (UNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|UnitDiagBit,Conj, RowMajor,ColMajor>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| |
| int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); |
| if(code>=16 || func[code]==0) |
| return 0; |
| |
| func[code](*n, a, *lda, b, *incb); |
| return 0; |
| } |
| |
| |
| |
| int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) |
| { |
| return 0; |
| // TODO |
| |
| typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int); |
| functype func[16]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<16; ++k) |
| func[k] = 0; |
| |
| // func[NOTR | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|0, true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| // func[TR | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|0, true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| // func[ADJ | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| // |
| // func[NOTR | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|0, true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| // func[TR | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|0, true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| // func[ADJ | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| // |
| // func[NOTR | (UP << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|UnitDiagBit,true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| // func[TR | (UP << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|UnitDiagBit,true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| // func[ADJ | (UP << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|UnitDiagBit,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| // |
| // func[NOTR | (LO << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|UnitDiagBit,true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| // func[TR | (LO << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|UnitDiagBit,true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| // func[ADJ | (LO << 2) | (UNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|UnitDiagBit,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| |
| int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); |
| if(code>=16 || func[code]==0) |
| return 0; |
| |
| func[code](*n, a, *lda, b, *incb, b, *incb); |
| return 0; |
| } |
| |
| // y = alpha*A*x + beta*y |
| int EIGEN_BLAS_FUNC(ssymv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) |
| { |
| return 0; |
| |
| // TODO |
| } |
| |
| int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *inca, RealScalar *pc, int *ldc) |
| { |
| return 0; |
| |
| // TODO |
| typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar); |
| functype func[2]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<2; ++k) |
| func[k] = 0; |
| |
| // func[UP] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run); |
| // func[LO] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| |
| int code = UPLO(*uplo); |
| if(code>=2 || func[code]==0) |
| return 0; |
| |
| func[code](*n, a, *inca, c, *ldc, alpha); |
| return 1; |
| } |
| |
| |
| |
| int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *inca, RealScalar *pb, int *incb, RealScalar *pc, int *ldc) |
| { |
| return 0; |
| |
| // TODO |
| typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); |
| functype func[2]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<2; ++k) |
| func[k] = 0; |
| |
| // func[UP] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run); |
| // func[LO] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| |
| int code = UPLO(*uplo); |
| if(code>=2 || func[code]==0) |
| return 0; |
| |
| func[code](*n, a, *inca, b, *incb, c, *ldc, alpha); |
| return 1; |
| } |
| |
| |
| #if ISCOMPLEX |
| |
| #endif // ISCOMPLEX |