| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <Eigen/Eigenvalues> |
| |
| template<typename Scalar,int Size> void hessenberg(int size = Size) |
| { |
| typedef Matrix<Scalar,Size,Size> MatrixType; |
| |
| // Test basic functionality: A = U H U* and H is Hessenberg |
| for(int counter = 0; counter < g_repeat; ++counter) { |
| MatrixType m = MatrixType::Random(size,size); |
| HessenbergDecomposition<MatrixType> hess(m); |
| MatrixType Q = hess.matrixQ(); |
| MatrixType H = hess.matrixH(); |
| VERIFY_IS_APPROX(m, Q * H * Q.adjoint()); |
| for(int row = 2; row < size; ++row) { |
| for(int col = 0; col < row-1; ++col) { |
| VERIFY(H(row,col) == (typename MatrixType::Scalar)0); |
| } |
| } |
| } |
| |
| // Test whether compute() and constructor returns same result |
| MatrixType A = MatrixType::Random(size, size); |
| HessenbergDecomposition<MatrixType> cs1; |
| cs1.compute(A); |
| HessenbergDecomposition<MatrixType> cs2(A); |
| VERIFY_IS_EQUAL(cs1.matrixH().eval(), cs2.matrixH().eval()); |
| MatrixType cs1Q = cs1.matrixQ(); |
| MatrixType cs2Q = cs2.matrixQ(); |
| VERIFY_IS_EQUAL(cs1Q, cs2Q); |
| |
| // Test assertions for when used uninitialized |
| HessenbergDecomposition<MatrixType> hessUninitialized; |
| VERIFY_RAISES_ASSERT( hessUninitialized.matrixH() ); |
| VERIFY_RAISES_ASSERT( hessUninitialized.matrixQ() ); |
| VERIFY_RAISES_ASSERT( hessUninitialized.householderCoefficients() ); |
| VERIFY_RAISES_ASSERT( hessUninitialized.packedMatrix() ); |
| |
| // TODO: Add tests for packedMatrix() and householderCoefficients() |
| } |
| |
| void test_hessenberg() |
| { |
| CALL_SUBTEST_1(( hessenberg<std::complex<double>,1>() )); |
| CALL_SUBTEST_2(( hessenberg<std::complex<double>,2>() )); |
| CALL_SUBTEST_3(( hessenberg<std::complex<float>,4>() )); |
| CALL_SUBTEST_4(( hessenberg<float,Dynamic>(ei_random<int>(1,320)) )); |
| CALL_SUBTEST_5(( hessenberg<std::complex<double>,Dynamic>(ei_random<int>(1,320)) )); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_6(HessenbergDecomposition<MatrixXf>(10)); |
| } |