| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <Eigen/SVD> |
| #include <Eigen/LU> |
| |
| template<typename MatrixType, unsigned int Options> void svd(const MatrixType& m = MatrixType(), bool pickrandom = true) |
| { |
| typedef typename MatrixType::Index Index; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType; |
| typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType; |
| typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType; |
| typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType; |
| |
| MatrixType a; |
| if(pickrandom) a = MatrixType::Random(rows,cols); |
| else a = m; |
| |
| JacobiSVD<MatrixType,Options> svd(a); |
| MatrixType sigma = MatrixType::Zero(rows,cols); |
| sigma.diagonal() = svd.singularValues().template cast<Scalar>(); |
| MatrixUType u = svd.matrixU(); |
| MatrixVType v = svd.matrixV(); |
| |
| //std::cout << "a\n" << a << std::endl; |
| //std::cout << "b\n" << u * sigma * v.adjoint() << std::endl; |
| |
| VERIFY_IS_APPROX(a, u * sigma * v.adjoint()); |
| VERIFY_IS_UNITARY(u); |
| VERIFY_IS_UNITARY(v); |
| } |
| |
| template<typename MatrixType> void svd_verify_assert() |
| { |
| MatrixType tmp; |
| |
| SVD<MatrixType> svd; |
| //VERIFY_RAISES_ASSERT(svd.solve(tmp, &tmp)) |
| VERIFY_RAISES_ASSERT(svd.matrixU()) |
| VERIFY_RAISES_ASSERT(svd.singularValues()) |
| VERIFY_RAISES_ASSERT(svd.matrixV()) |
| /*VERIFY_RAISES_ASSERT(svd.computeUnitaryPositive(&tmp,&tmp)) |
| VERIFY_RAISES_ASSERT(svd.computePositiveUnitary(&tmp,&tmp)) |
| VERIFY_RAISES_ASSERT(svd.computeRotationScaling(&tmp,&tmp)) |
| VERIFY_RAISES_ASSERT(svd.computeScalingRotation(&tmp,&tmp))*/ |
| } |
| |
| void test_jacobisvd() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| Matrix2cd m; |
| m << 0, 1, |
| 0, 1; |
| CALL_SUBTEST_1(( svd<Matrix2cd,0>(m, false) )); |
| m << 1, 0, |
| 1, 0; |
| CALL_SUBTEST_1(( svd<Matrix2cd,0>(m, false) )); |
| Matrix2d n; |
| n << 1, 1, |
| 1, -1; |
| CALL_SUBTEST_2(( svd<Matrix2d,0>(n, false) )); |
| CALL_SUBTEST_3(( svd<Matrix3f,0>() )); |
| CALL_SUBTEST_4(( svd<Matrix4d,Square>() )); |
| CALL_SUBTEST_5(( svd<Matrix<float,3,5> , AtLeastAsManyColsAsRows>() )); |
| CALL_SUBTEST_6(( svd<Matrix<double,Dynamic,2> , AtLeastAsManyRowsAsCols>(Matrix<double,Dynamic,2>(10,2)) )); |
| |
| CALL_SUBTEST_7(( svd<MatrixXf,Square>(MatrixXf(50,50)) )); |
| CALL_SUBTEST_8(( svd<MatrixXcd,AtLeastAsManyRowsAsCols>(MatrixXcd(14,7)) )); |
| } |
| CALL_SUBTEST_9(( svd<MatrixXf,0>(MatrixXf(300,200)) )); |
| CALL_SUBTEST_10(( svd<MatrixXcd,AtLeastAsManyColsAsRows>(MatrixXcd(100,150)) )); |
| |
| CALL_SUBTEST_3(( svd_verify_assert<Matrix3f>() )); |
| CALL_SUBTEST_3(( svd_verify_assert<Matrix3d>() )); |
| CALL_SUBTEST_9(( svd_verify_assert<MatrixXf>() )); |
| CALL_SUBTEST_11(( svd_verify_assert<MatrixXd>() )); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_12( JacobiSVD<MatrixXf>(10, 20) ); |
| } |