| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include <cstdlib> |
| #include <cerrno> |
| #include <ctime> |
| #include <iostream> |
| #include <string> |
| #include <vector> |
| #include <typeinfo> |
| |
| #ifdef NDEBUG |
| #undef NDEBUG |
| #endif |
| |
| #ifndef EIGEN_TEST_FUNC |
| #error EIGEN_TEST_FUNC must be defined |
| #endif |
| |
| #define DEFAULT_REPEAT 10 |
| |
| #ifdef __ICC |
| // disable warning #279: controlling expression is constant |
| #pragma warning disable 279 |
| #endif |
| |
| namespace Eigen |
| { |
| static std::vector<std::string> g_test_stack; |
| static int g_repeat; |
| static unsigned int g_seed; |
| static bool g_has_set_repeat, g_has_set_seed; |
| } |
| |
| #define EI_PP_MAKE_STRING2(S) #S |
| #define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S) |
| |
| #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "") |
| |
| #ifndef EIGEN_NO_ASSERTION_CHECKING |
| |
| namespace Eigen |
| { |
| static const bool should_raise_an_assert = false; |
| |
| // Used to avoid to raise two exceptions at a time in which |
| // case the exception is not properly caught. |
| // This may happen when a second exceptions is raise in a destructor. |
| static bool no_more_assert = false; |
| static bool report_on_cerr_on_assert_failure = true; |
| |
| struct ei_assert_exception |
| { |
| ei_assert_exception(void) {} |
| ~ei_assert_exception() { Eigen::no_more_assert = false; } |
| }; |
| } |
| |
| // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is raised while |
| // one should have been, then the list of excecuted assertions is printed out. |
| // |
| // EIGEN_DEBUG_ASSERTS is not enabled by default as it |
| // significantly increases the compilation time |
| // and might even introduce side effects that would hide |
| // some memory errors. |
| #ifdef EIGEN_DEBUG_ASSERTS |
| |
| namespace Eigen |
| { |
| static bool ei_push_assert = false; |
| static std::vector<std::string> ei_assert_list; |
| } |
| |
| #define ei_assert(a) \ |
| if( (!(a)) && (!no_more_assert) ) \ |
| { \ |
| if(report_on_cerr_on_assert_failure) \ |
| std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \ |
| Eigen::no_more_assert = true; \ |
| throw Eigen::ei_assert_exception(); \ |
| } \ |
| else if (Eigen::ei_push_assert) \ |
| { \ |
| ei_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__)" ("EI_PP_MAKE_STRING(__LINE__)") : "#a) ); \ |
| } |
| |
| #define VERIFY_RAISES_ASSERT(a) \ |
| { \ |
| Eigen::no_more_assert = false; \ |
| try { \ |
| Eigen::ei_assert_list.clear(); \ |
| Eigen::ei_push_assert = true; \ |
| Eigen::report_on_cerr_on_assert_failure = false; \ |
| a; \ |
| Eigen::report_on_cerr_on_assert_failure = true; \ |
| Eigen::ei_push_assert = false; \ |
| std::cerr << "One of the following asserts should have been raised:\n"; \ |
| for (uint ai=0 ; ai<ei_assert_list.size() ; ++ai) \ |
| std::cerr << " " << ei_assert_list[ai] << "\n"; \ |
| VERIFY(Eigen::should_raise_an_assert && # a); \ |
| } catch (Eigen::ei_assert_exception e) { \ |
| Eigen::ei_push_assert = false; VERIFY(true); \ |
| } \ |
| } |
| |
| #else // EIGEN_DEBUG_ASSERTS |
| |
| #define ei_assert(a) \ |
| if( (!(a)) && (!no_more_assert) ) \ |
| { \ |
| Eigen::no_more_assert = true; \ |
| if(report_on_cerr_on_assert_failure) \ |
| std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \ |
| throw Eigen::ei_assert_exception(); \ |
| } |
| |
| #define VERIFY_RAISES_ASSERT(a) { \ |
| Eigen::no_more_assert = false; \ |
| try { \ |
| Eigen::report_on_cerr_on_assert_failure = false; \ |
| a; \ |
| Eigen::report_on_cerr_on_assert_failure = true; \ |
| VERIFY(Eigen::should_raise_an_assert && # a); \ |
| } \ |
| catch (Eigen::ei_assert_exception e) { VERIFY(true); } \ |
| } |
| |
| #endif // EIGEN_DEBUG_ASSERTS |
| |
| #define EIGEN_USE_CUSTOM_ASSERT |
| |
| #else // EIGEN_NO_ASSERTION_CHECKING |
| |
| #define VERIFY_RAISES_ASSERT(a) {} |
| |
| #endif // EIGEN_NO_ASSERTION_CHECKING |
| |
| |
| #define EIGEN_INTERNAL_DEBUGGING |
| #include <Eigen/QR> // required for createRandomPIMatrixOfRank |
| |
| |
| #define VERIFY(a) do { if (!(a)) { \ |
| std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__) << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" \ |
| << std::endl << " " << EI_PP_MAKE_STRING(a) << std::endl << std::endl; \ |
| exit(2); \ |
| } } while (0) |
| |
| #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b)) |
| #define VERIFY_IS_APPROX(a, b) VERIFY(test_ei_isApprox(a, b)) |
| #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_ei_isApprox(a, b)) |
| #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_ei_isMuchSmallerThan(a, b)) |
| #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_ei_isMuchSmallerThan(a, b)) |
| #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_ei_isApproxOrLessThan(a, b)) |
| #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_ei_isApproxOrLessThan(a, b)) |
| |
| #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a)) |
| |
| #define CALL_SUBTEST(FUNC) do { \ |
| g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \ |
| FUNC; \ |
| g_test_stack.pop_back(); \ |
| } while (0) |
| |
| #ifdef EIGEN_TEST_PART_1 |
| #define CALL_SUBTEST_1(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_1(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_2 |
| #define CALL_SUBTEST_2(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_2(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_3 |
| #define CALL_SUBTEST_3(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_3(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_4 |
| #define CALL_SUBTEST_4(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_4(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_5 |
| #define CALL_SUBTEST_5(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_5(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_6 |
| #define CALL_SUBTEST_6(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_6(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_7 |
| #define CALL_SUBTEST_7(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_7(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_8 |
| #define CALL_SUBTEST_8(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_8(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_9 |
| #define CALL_SUBTEST_9(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_9(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_10 |
| #define CALL_SUBTEST_10(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_10(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_11 |
| #define CALL_SUBTEST_11(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_11(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_12 |
| #define CALL_SUBTEST_12(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_12(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_13 |
| #define CALL_SUBTEST_13(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_13(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_14 |
| #define CALL_SUBTEST_14(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_14(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_15 |
| #define CALL_SUBTEST_15(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_15(FUNC) |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_16 |
| #define CALL_SUBTEST_16(FUNC) CALL_SUBTEST(FUNC) |
| #else |
| #define CALL_SUBTEST_16(FUNC) |
| #endif |
| |
| namespace Eigen { |
| |
| template<typename T> inline typename NumTraits<T>::Real test_precision() { return T(0); } |
| template<> inline float test_precision<float>() { return 1e-3f; } |
| template<> inline double test_precision<double>() { return 1e-6; } |
| template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } |
| template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } |
| template<> inline long double test_precision<long double>() { return 1e-6; } |
| |
| inline bool test_ei_isApprox(const int& a, const int& b) |
| { return ei_isApprox(a, b, test_precision<int>()); } |
| inline bool test_ei_isMuchSmallerThan(const int& a, const int& b) |
| { return ei_isMuchSmallerThan(a, b, test_precision<int>()); } |
| inline bool test_ei_isApproxOrLessThan(const int& a, const int& b) |
| { return ei_isApproxOrLessThan(a, b, test_precision<int>()); } |
| |
| inline bool test_ei_isApprox(const float& a, const float& b) |
| { return ei_isApprox(a, b, test_precision<float>()); } |
| inline bool test_ei_isMuchSmallerThan(const float& a, const float& b) |
| { return ei_isMuchSmallerThan(a, b, test_precision<float>()); } |
| inline bool test_ei_isApproxOrLessThan(const float& a, const float& b) |
| { return ei_isApproxOrLessThan(a, b, test_precision<float>()); } |
| |
| inline bool test_ei_isApprox(const double& a, const double& b) |
| { |
| bool ret = ei_isApprox(a, b, test_precision<double>()); |
| if (!ret) std::cerr |
| << std::endl << " actual = " << a |
| << std::endl << " expected = " << b << std::endl << std::endl; |
| return ret; |
| } |
| |
| inline bool test_ei_isMuchSmallerThan(const double& a, const double& b) |
| { return ei_isMuchSmallerThan(a, b, test_precision<double>()); } |
| inline bool test_ei_isApproxOrLessThan(const double& a, const double& b) |
| { return ei_isApproxOrLessThan(a, b, test_precision<double>()); } |
| |
| inline bool test_ei_isApprox(const std::complex<float>& a, const std::complex<float>& b) |
| { return ei_isApprox(a, b, test_precision<std::complex<float> >()); } |
| inline bool test_ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b) |
| { return ei_isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); } |
| |
| inline bool test_ei_isApprox(const std::complex<double>& a, const std::complex<double>& b) |
| { return ei_isApprox(a, b, test_precision<std::complex<double> >()); } |
| inline bool test_ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b) |
| { return ei_isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); } |
| |
| inline bool test_ei_isApprox(const long double& a, const long double& b) |
| { |
| bool ret = ei_isApprox(a, b, test_precision<long double>()); |
| if (!ret) std::cerr |
| << std::endl << " actual = " << a |
| << std::endl << " expected = " << b << std::endl << std::endl; |
| return ret; |
| } |
| |
| inline bool test_ei_isMuchSmallerThan(const long double& a, const long double& b) |
| { return ei_isMuchSmallerThan(a, b, test_precision<long double>()); } |
| inline bool test_ei_isApproxOrLessThan(const long double& a, const long double& b) |
| { return ei_isApproxOrLessThan(a, b, test_precision<long double>()); } |
| |
| template<typename Type1, typename Type2> |
| inline bool test_ei_isApprox(const Type1& a, const Type2& b) |
| { |
| return a.isApprox(b, test_precision<typename Type1::Scalar>()); |
| } |
| |
| template<typename Derived1, typename Derived2> |
| inline bool test_ei_isMuchSmallerThan(const MatrixBase<Derived1>& m1, |
| const MatrixBase<Derived2>& m2) |
| { |
| return m1.isMuchSmallerThan(m2, test_precision<typename ei_traits<Derived1>::Scalar>()); |
| } |
| |
| template<typename Derived> |
| inline bool test_ei_isMuchSmallerThan(const MatrixBase<Derived>& m, |
| const typename NumTraits<typename ei_traits<Derived>::Scalar>::Real& s) |
| { |
| return m.isMuchSmallerThan(s, test_precision<typename ei_traits<Derived>::Scalar>()); |
| } |
| |
| template<typename Derived> |
| inline bool test_isUnitary(const MatrixBase<Derived>& m) |
| { |
| return m.isUnitary(test_precision<typename ei_traits<Derived>::Scalar>()); |
| } |
| |
| template<typename T, typename U> |
| bool test_is_equal(const T& actual, const U& expected) |
| { |
| if (actual==expected) |
| return true; |
| // false: |
| std::cerr |
| << std::endl << " actual = " << actual |
| << std::endl << " expected = " << expected << std::endl << std::endl; |
| return false; |
| } |
| |
| /** Creates a random Partial Isometry matrix of given rank. |
| * |
| * A partial isometry is a matrix all of whose singular values are either 0 or 1. |
| * This is very useful to test rank-revealing algorithms. |
| */ |
| template<typename MatrixType> |
| void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m) |
| { |
| typedef typename ei_traits<MatrixType>::Index Index; |
| typedef typename ei_traits<MatrixType>::Scalar Scalar; |
| enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; |
| |
| typedef Matrix<Scalar, Dynamic, 1> VectorType; |
| typedef Matrix<Scalar, Rows, Rows> MatrixAType; |
| typedef Matrix<Scalar, Cols, Cols> MatrixBType; |
| |
| if(desired_rank == 0) |
| { |
| m.setZero(rows,cols); |
| return; |
| } |
| |
| if(desired_rank == 1) |
| { |
| // here we normalize the vectors to get a partial isometry |
| m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose(); |
| return; |
| } |
| |
| MatrixAType a = MatrixAType::Random(rows,rows); |
| MatrixType d = MatrixType::Identity(rows,cols); |
| MatrixBType b = MatrixBType::Random(cols,cols); |
| |
| // set the diagonal such that only desired_rank non-zero entries reamain |
| const Index diag_size = std::min(d.rows(),d.cols()); |
| if(diag_size != desired_rank) |
| d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank); |
| |
| HouseholderQR<MatrixAType> qra(a); |
| HouseholderQR<MatrixBType> qrb(b); |
| m = qra.householderQ() * d * qrb.householderQ(); |
| } |
| |
| } // end namespace Eigen |
| |
| template<typename T> struct GetDifferentType; |
| |
| template<> struct GetDifferentType<float> { typedef double type; }; |
| template<> struct GetDifferentType<double> { typedef float type; }; |
| template<typename T> struct GetDifferentType<std::complex<T> > |
| { typedef std::complex<typename GetDifferentType<T>::type> type; }; |
| |
| template<typename T> std::string type_name() { return "other"; } |
| template<> std::string type_name<float>() { return "float"; } |
| template<> std::string type_name<double>() { return "double"; } |
| template<> std::string type_name<int>() { return "int"; } |
| template<> std::string type_name<std::complex<float> >() { return "complex<float>"; } |
| template<> std::string type_name<std::complex<double> >() { return "complex<double>"; } |
| template<> std::string type_name<std::complex<int> >() { return "complex<int>"; } |
| |
| // forward declaration of the main test function |
| void EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); |
| |
| using namespace Eigen; |
| |
| void set_repeat_from_string(const char *str) |
| { |
| errno = 0; |
| g_repeat = int(strtoul(str, 0, 10)); |
| if(errno || g_repeat <= 0) |
| { |
| std::cout << "Invalid repeat value " << str << std::endl; |
| exit(EXIT_FAILURE); |
| } |
| g_has_set_repeat = true; |
| } |
| |
| void set_seed_from_string(const char *str) |
| { |
| errno = 0; |
| g_seed = strtoul(str, 0, 10); |
| if(errno || g_seed == 0) |
| { |
| std::cout << "Invalid seed value " << str << std::endl; |
| exit(EXIT_FAILURE); |
| } |
| g_has_set_seed = true; |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| g_has_set_repeat = false; |
| g_has_set_seed = false; |
| bool need_help = false; |
| |
| for(int i = 1; i < argc; i++) |
| { |
| if(argv[i][0] == 'r') |
| { |
| if(g_has_set_repeat) |
| { |
| std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; |
| return 1; |
| } |
| set_repeat_from_string(argv[i]+1); |
| } |
| else if(argv[i][0] == 's') |
| { |
| if(g_has_set_seed) |
| { |
| std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; |
| return 1; |
| } |
| set_seed_from_string(argv[i]+1); |
| } |
| else |
| { |
| need_help = true; |
| } |
| } |
| |
| if(need_help) |
| { |
| std::cout << "This test application takes the following optional arguments:" << std::endl; |
| std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl; |
| std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl; |
| std::cout << std::endl; |
| std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl; |
| std::cout << "will be used as default values for these parameters." << std::endl; |
| return 1; |
| } |
| |
| char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT"); |
| if(!g_has_set_repeat && env_EIGEN_REPEAT) |
| set_repeat_from_string(env_EIGEN_REPEAT); |
| char *env_EIGEN_SEED = getenv("EIGEN_SEED"); |
| if(!g_has_set_seed && env_EIGEN_SEED) |
| set_seed_from_string(env_EIGEN_SEED); |
| |
| if(!g_has_set_seed) g_seed = (unsigned int) time(NULL); |
| if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT; |
| |
| std::cout << "Initializing random number generator with seed " << g_seed << std::endl; |
| srand(g_seed); |
| std::cout << "Repeating each test " << g_repeat << " times" << std::endl; |
| |
| Eigen::g_test_stack.push_back(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC)); |
| |
| EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); |
| return 0; |
| } |
| |