|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_LDLT_H | 
|  | #define EIGEN_LDLT_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  | template<typename MatrixType_, int UpLo_> struct traits<LDLT<MatrixType_, UpLo_> > | 
|  | : traits<MatrixType_> | 
|  | { | 
|  | typedef MatrixXpr XprKind; | 
|  | typedef SolverStorage StorageKind; | 
|  | typedef int StorageIndex; | 
|  | enum { Flags = 0 }; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType, int UpLo> struct LDLT_Traits; | 
|  |  | 
|  | // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef | 
|  | enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; | 
|  | } | 
|  |  | 
|  | /** \ingroup Cholesky_Module | 
|  | * | 
|  | * \class LDLT | 
|  | * | 
|  | * \brief Robust Cholesky decomposition of a matrix with pivoting | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix of which to compute the LDL^T Cholesky decomposition | 
|  | * \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper. | 
|  | *             The other triangular part won't be read. | 
|  | * | 
|  | * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite | 
|  | * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L | 
|  | * is lower triangular with a unit diagonal and D is a diagonal matrix. | 
|  | * | 
|  | * The decomposition uses pivoting to ensure stability, so that D will have | 
|  | * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root | 
|  | * on D also stabilizes the computation. | 
|  | * | 
|  | * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky | 
|  | * decomposition to determine whether a system of equations has a solution. | 
|  | * | 
|  | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
|  | * | 
|  | * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT | 
|  | */ | 
|  | template<typename MatrixType_, int UpLo_> class LDLT | 
|  | : public SolverBase<LDLT<MatrixType_, UpLo_> > | 
|  | { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef SolverBase<LDLT> Base; | 
|  | friend class SolverBase<LDLT>; | 
|  |  | 
|  | EIGEN_GENERIC_PUBLIC_INTERFACE(LDLT) | 
|  | enum { | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
|  | UpLo = UpLo_ | 
|  | }; | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType; | 
|  |  | 
|  | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; | 
|  | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; | 
|  |  | 
|  | typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; | 
|  |  | 
|  | /** \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via LDLT::compute(const MatrixType&). | 
|  | */ | 
|  | LDLT() | 
|  | : m_matrix(), | 
|  | m_transpositions(), | 
|  | m_sign(internal::ZeroSign), | 
|  | m_isInitialized(false) | 
|  | {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa LDLT() | 
|  | */ | 
|  | explicit LDLT(Index size) | 
|  | : m_matrix(size, size), | 
|  | m_transpositions(size), | 
|  | m_temporary(size), | 
|  | m_sign(internal::ZeroSign), | 
|  | m_isInitialized(false) | 
|  | {} | 
|  |  | 
|  | /** \brief Constructor with decomposition | 
|  | * | 
|  | * This calculates the decomposition for the input \a matrix. | 
|  | * | 
|  | * \sa LDLT(Index size) | 
|  | */ | 
|  | template<typename InputType> | 
|  | explicit LDLT(const EigenBase<InputType>& matrix) | 
|  | : m_matrix(matrix.rows(), matrix.cols()), | 
|  | m_transpositions(matrix.rows()), | 
|  | m_temporary(matrix.rows()), | 
|  | m_sign(internal::ZeroSign), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \brief Constructs a LDLT factorization from a given matrix | 
|  | * | 
|  | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. | 
|  | * | 
|  | * \sa LDLT(const EigenBase&) | 
|  | */ | 
|  | template<typename InputType> | 
|  | explicit LDLT(EigenBase<InputType>& matrix) | 
|  | : m_matrix(matrix.derived()), | 
|  | m_transpositions(matrix.rows()), | 
|  | m_temporary(matrix.rows()), | 
|  | m_sign(internal::ZeroSign), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** Clear any existing decomposition | 
|  | * \sa rankUpdate(w,sigma) | 
|  | */ | 
|  | void setZero() | 
|  | { | 
|  | m_isInitialized = false; | 
|  | } | 
|  |  | 
|  | /** \returns a view of the upper triangular matrix U */ | 
|  | inline typename Traits::MatrixU matrixU() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return Traits::getU(m_matrix); | 
|  | } | 
|  |  | 
|  | /** \returns a view of the lower triangular matrix L */ | 
|  | inline typename Traits::MatrixL matrixL() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return Traits::getL(m_matrix); | 
|  | } | 
|  |  | 
|  | /** \returns the permutation matrix P as a transposition sequence. | 
|  | */ | 
|  | inline const TranspositionType& transpositionsP() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_transpositions; | 
|  | } | 
|  |  | 
|  | /** \returns the coefficients of the diagonal matrix D */ | 
|  | inline Diagonal<const MatrixType> vectorD() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_matrix.diagonal(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix is positive (semidefinite) */ | 
|  | inline bool isPositive() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix is negative (semidefinite) */ | 
|  | inline bool isNegative(void) const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. | 
|  | * | 
|  | * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . | 
|  | * | 
|  | * \note_about_checking_solutions | 
|  | * | 
|  | * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ | 
|  | * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, | 
|  | * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then | 
|  | * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the | 
|  | * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function | 
|  | * computes the least-square solution of \f$ A x = b \f$ if \f$ A \f$ is singular. | 
|  | * | 
|  | * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() | 
|  | */ | 
|  | template<typename Rhs> | 
|  | inline const Solve<LDLT, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const; | 
|  | #endif | 
|  |  | 
|  | template<typename Derived> | 
|  | bool solveInPlace(MatrixBase<Derived> &bAndX) const; | 
|  |  | 
|  | template<typename InputType> | 
|  | LDLT& compute(const EigenBase<InputType>& matrix); | 
|  |  | 
|  | /** \returns an estimate of the reciprocal condition number of the matrix of | 
|  | *  which \c *this is the LDLT decomposition. | 
|  | */ | 
|  | RealScalar rcond() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return internal::rcond_estimate_helper(m_l1_norm, *this); | 
|  | } | 
|  |  | 
|  | template <typename Derived> | 
|  | LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); | 
|  |  | 
|  | /** \returns the internal LDLT decomposition matrix | 
|  | * | 
|  | * TODO: document the storage layout | 
|  | */ | 
|  | inline const MatrixType& matrixLDLT() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_matrix; | 
|  | } | 
|  |  | 
|  | MatrixType reconstructedMatrix() const; | 
|  |  | 
|  | /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. | 
|  | * | 
|  | * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: | 
|  | * \code x = decomposition.adjoint().solve(b) \endcode | 
|  | */ | 
|  | const LDLT& adjoint() const { return *this; }; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } | 
|  | EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, | 
|  | *          \c NumericalIssue if the factorization failed because of a zero pivot. | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename RhsType, typename DstType> | 
|  | void _solve_impl(const RhsType &rhs, DstType &dst) const; | 
|  |  | 
|  | template<bool Conjugate, typename RhsType, typename DstType> | 
|  | void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  |  | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  |  | 
|  | /** \internal | 
|  | * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. | 
|  | * The strict upper part is used during the decomposition, the strict lower | 
|  | * part correspond to the coefficients of L (its diagonal is equal to 1 and | 
|  | * is not stored), and the diagonal entries correspond to D. | 
|  | */ | 
|  | MatrixType m_matrix; | 
|  | RealScalar m_l1_norm; | 
|  | TranspositionType m_transpositions; | 
|  | TmpMatrixType m_temporary; | 
|  | internal::SignMatrix m_sign; | 
|  | bool m_isInitialized; | 
|  | ComputationInfo m_info; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<int UpLo> struct ldlt_inplace; | 
|  |  | 
|  | template<> struct ldlt_inplace<Lower> | 
|  | { | 
|  | template<typename MatrixType, typename TranspositionType, typename Workspace> | 
|  | static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) | 
|  | { | 
|  | using std::abs; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename TranspositionType::StorageIndex IndexType; | 
|  | eigen_assert(mat.rows()==mat.cols()); | 
|  | const Index size = mat.rows(); | 
|  | bool found_zero_pivot = false; | 
|  | bool ret = true; | 
|  |  | 
|  | if (size <= 1) | 
|  | { | 
|  | transpositions.setIdentity(); | 
|  | if(size==0) sign = ZeroSign; | 
|  | else if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef; | 
|  | else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef; | 
|  | else sign = ZeroSign; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (Index k = 0; k < size; ++k) | 
|  | { | 
|  | // Find largest diagonal element | 
|  | Index index_of_biggest_in_corner; | 
|  | mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); | 
|  | index_of_biggest_in_corner += k; | 
|  |  | 
|  | transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); | 
|  | if(k != index_of_biggest_in_corner) | 
|  | { | 
|  | // apply the transposition while taking care to consider only | 
|  | // the lower triangular part | 
|  | Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element | 
|  | mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); | 
|  | mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); | 
|  | std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); | 
|  | for(Index i=k+1;i<index_of_biggest_in_corner;++i) | 
|  | { | 
|  | Scalar tmp = mat.coeffRef(i,k); | 
|  | mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); | 
|  | mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); | 
|  | } | 
|  | if(NumTraits<Scalar>::IsComplex) | 
|  | mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); | 
|  | } | 
|  |  | 
|  | // partition the matrix: | 
|  | //       A00 |  -  |  - | 
|  | // lu  = A10 | A11 |  - | 
|  | //       A20 | A21 | A22 | 
|  | Index rs = size - k - 1; | 
|  | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); | 
|  | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); | 
|  | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); | 
|  |  | 
|  | if(k>0) | 
|  | { | 
|  | temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); | 
|  | mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); | 
|  | if(rs>0) | 
|  | A21.noalias() -= A20 * temp.head(k); | 
|  | } | 
|  |  | 
|  | // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot | 
|  | // was smaller than the cutoff value. However, since LDLT is not rank-revealing | 
|  | // we should only make sure that we do not introduce INF or NaN values. | 
|  | // Remark that LAPACK also uses 0 as the cutoff value. | 
|  | RealScalar realAkk = numext::real(mat.coeffRef(k,k)); | 
|  | bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); | 
|  |  | 
|  | if(k==0 && !pivot_is_valid) | 
|  | { | 
|  | // The entire diagonal is zero, there is nothing more to do | 
|  | // except filling the transpositions, and checking whether the matrix is zero. | 
|  | sign = ZeroSign; | 
|  | for(Index j = 0; j<size; ++j) | 
|  | { | 
|  | transpositions.coeffRef(j) = IndexType(j); | 
|  | ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if((rs>0) && pivot_is_valid) | 
|  | A21 /= realAkk; | 
|  | else if(rs>0) | 
|  | ret = ret && (A21.array()==Scalar(0)).all(); | 
|  |  | 
|  | if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed | 
|  | else if(!pivot_is_valid) found_zero_pivot = true; | 
|  |  | 
|  | if (sign == PositiveSemiDef) { | 
|  | if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite; | 
|  | } else if (sign == NegativeSemiDef) { | 
|  | if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite; | 
|  | } else if (sign == ZeroSign) { | 
|  | if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef; | 
|  | else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Reference for the algorithm: Davis and Hager, "Multiple Rank | 
|  | // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) | 
|  | // Trivial rearrangements of their computations (Timothy E. Holy) | 
|  | // allow their algorithm to work for rank-1 updates even if the | 
|  | // original matrix is not of full rank. | 
|  | // Here only rank-1 updates are implemented, to reduce the | 
|  | // requirement for intermediate storage and improve accuracy | 
|  | template<typename MatrixType, typename WDerived> | 
|  | static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) | 
|  | { | 
|  | using numext::isfinite; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  |  | 
|  | const Index size = mat.rows(); | 
|  | eigen_assert(mat.cols() == size && w.size()==size); | 
|  |  | 
|  | RealScalar alpha = 1; | 
|  |  | 
|  | // Apply the update | 
|  | for (Index j = 0; j < size; j++) | 
|  | { | 
|  | // Check for termination due to an original decomposition of low-rank | 
|  | if (!(isfinite)(alpha)) | 
|  | break; | 
|  |  | 
|  | // Update the diagonal terms | 
|  | RealScalar dj = numext::real(mat.coeff(j,j)); | 
|  | Scalar wj = w.coeff(j); | 
|  | RealScalar swj2 = sigma*numext::abs2(wj); | 
|  | RealScalar gamma = dj*alpha + swj2; | 
|  |  | 
|  | mat.coeffRef(j,j) += swj2/alpha; | 
|  | alpha += swj2/dj; | 
|  |  | 
|  |  | 
|  | // Update the terms of L | 
|  | Index rs = size-j-1; | 
|  | w.tail(rs) -= wj * mat.col(j).tail(rs); | 
|  | if(gamma != 0) | 
|  | mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> | 
|  | static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) | 
|  | { | 
|  | // Apply the permutation to the input w | 
|  | tmp = transpositions * w; | 
|  |  | 
|  | return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> struct ldlt_inplace<Upper> | 
|  | { | 
|  | template<typename MatrixType, typename TranspositionType, typename Workspace> | 
|  | static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) | 
|  | { | 
|  | Transpose<MatrixType> matt(mat); | 
|  | return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> | 
|  | static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) | 
|  | { | 
|  | Transpose<MatrixType> matt(mat); | 
|  | return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> | 
|  | { | 
|  | typedef const TriangularView<const MatrixType, UnitLower> MatrixL; | 
|  | typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; | 
|  | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } | 
|  | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> | 
|  | { | 
|  | typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; | 
|  | typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; | 
|  | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } | 
|  | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix | 
|  | */ | 
|  | template<typename MatrixType, int UpLo_> | 
|  | template<typename InputType> | 
|  | LDLT<MatrixType,UpLo_>& LDLT<MatrixType,UpLo_>::compute(const EigenBase<InputType>& a) | 
|  | { | 
|  | eigen_assert(a.rows()==a.cols()); | 
|  | const Index size = a.rows(); | 
|  |  | 
|  | m_matrix = a.derived(); | 
|  |  | 
|  | // Compute matrix L1 norm = max abs column sum. | 
|  | m_l1_norm = RealScalar(0); | 
|  | // TODO move this code to SelfAdjointView | 
|  | for (Index col = 0; col < size; ++col) { | 
|  | RealScalar abs_col_sum; | 
|  | if (UpLo_ == Lower) | 
|  | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | 
|  | else | 
|  | abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); | 
|  | if (abs_col_sum > m_l1_norm) | 
|  | m_l1_norm = abs_col_sum; | 
|  | } | 
|  |  | 
|  | m_transpositions.resize(size); | 
|  | m_isInitialized = false; | 
|  | m_temporary.resize(size); | 
|  | m_sign = internal::ZeroSign; | 
|  |  | 
|  | m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | 
|  |  | 
|  | m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Update the LDLT decomposition:  given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. | 
|  | * \param w a vector to be incorporated into the decomposition. | 
|  | * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. | 
|  | * \sa setZero() | 
|  | */ | 
|  | template<typename MatrixType, int UpLo_> | 
|  | template<typename Derived> | 
|  | LDLT<MatrixType,UpLo_>& LDLT<MatrixType,UpLo_>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,UpLo_>::RealScalar& sigma) | 
|  | { | 
|  | typedef typename TranspositionType::StorageIndex IndexType; | 
|  | const Index size = w.rows(); | 
|  | if (m_isInitialized) | 
|  | { | 
|  | eigen_assert(m_matrix.rows()==size); | 
|  | } | 
|  | else | 
|  | { | 
|  | m_matrix.resize(size,size); | 
|  | m_matrix.setZero(); | 
|  | m_transpositions.resize(size); | 
|  | for (Index i = 0; i < size; i++) | 
|  | m_transpositions.coeffRef(i) = IndexType(i); | 
|  | m_temporary.resize(size); | 
|  | m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; | 
|  | m_isInitialized = true; | 
|  | } | 
|  |  | 
|  | internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename MatrixType_, int UpLo_> | 
|  | template<typename RhsType, typename DstType> | 
|  | void LDLT<MatrixType_,UpLo_>::_solve_impl(const RhsType &rhs, DstType &dst) const | 
|  | { | 
|  | _solve_impl_transposed<true>(rhs, dst); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType_,int UpLo_> | 
|  | template<bool Conjugate, typename RhsType, typename DstType> | 
|  | void LDLT<MatrixType_,UpLo_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const | 
|  | { | 
|  | // dst = P b | 
|  | dst = m_transpositions * rhs; | 
|  |  | 
|  | // dst = L^-1 (P b) | 
|  | // dst = L^-*T (P b) | 
|  | matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); | 
|  |  | 
|  | // dst = D^-* (L^-1 P b) | 
|  | // dst = D^-1 (L^-*T P b) | 
|  | // more precisely, use pseudo-inverse of D (see bug 241) | 
|  | using std::abs; | 
|  | const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); | 
|  | // In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min()) | 
|  | // and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS: | 
|  | // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); | 
|  | // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest | 
|  | // diagonal element is not well justified and leads to numerical issues in some cases. | 
|  | // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. | 
|  | // Using numeric_limits::min() gives us more robustness to denormals. | 
|  | RealScalar tolerance = (std::numeric_limits<RealScalar>::min)(); | 
|  | for (Index i = 0; i < vecD.size(); ++i) | 
|  | { | 
|  | if(abs(vecD(i)) > tolerance) | 
|  | dst.row(i) /= vecD(i); | 
|  | else | 
|  | dst.row(i).setZero(); | 
|  | } | 
|  |  | 
|  | // dst = L^-* (D^-* L^-1 P b) | 
|  | // dst = L^-T (D^-1 L^-*T P b) | 
|  | matrixL().transpose().template conjugateIf<Conjugate>().solveInPlace(dst); | 
|  |  | 
|  | // dst = P^T (L^-* D^-* L^-1 P b) = A^-1 b | 
|  | // dst = P^-T (L^-T D^-1 L^-*T P b) = A^-1 b | 
|  | dst = m_transpositions.transpose() * dst; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** \internal use x = ldlt_object.solve(x); | 
|  | * | 
|  | * This is the \em in-place version of solve(). | 
|  | * | 
|  | * \param bAndX represents both the right-hand side matrix b and result x. | 
|  | * | 
|  | * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. | 
|  | * | 
|  | * This version avoids a copy when the right hand side matrix b is not | 
|  | * needed anymore. | 
|  | * | 
|  | * \sa LDLT::solve(), MatrixBase::ldlt() | 
|  | */ | 
|  | template<typename MatrixType,int UpLo_> | 
|  | template<typename Derived> | 
|  | bool LDLT<MatrixType,UpLo_>::solveInPlace(MatrixBase<Derived> &bAndX) const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | eigen_assert(m_matrix.rows() == bAndX.rows()); | 
|  |  | 
|  | bAndX = this->solve(bAndX); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** \returns the matrix represented by the decomposition, | 
|  | * i.e., it returns the product: P^T L D L^* P. | 
|  | * This function is provided for debug purpose. */ | 
|  | template<typename MatrixType, int UpLo_> | 
|  | MatrixType LDLT<MatrixType,UpLo_>::reconstructedMatrix() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | const Index size = m_matrix.rows(); | 
|  | MatrixType res(size,size); | 
|  |  | 
|  | // P | 
|  | res.setIdentity(); | 
|  | res = transpositionsP() * res; | 
|  | // L^* P | 
|  | res = matrixU() * res; | 
|  | // D(L^*P) | 
|  | res = vectorD().real().asDiagonal() * res; | 
|  | // L(DL^*P) | 
|  | res = matrixL() * res; | 
|  | // P^T (LDL^*P) | 
|  | res = transpositionsP().transpose() * res; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \cholesky_module | 
|  | * \returns the Cholesky decomposition with full pivoting without square root of \c *this | 
|  | * \sa MatrixBase::ldlt() | 
|  | */ | 
|  | template<typename MatrixType, unsigned int UpLo> | 
|  | inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> | 
|  | SelfAdjointView<MatrixType, UpLo>::ldlt() const | 
|  | { | 
|  | return LDLT<PlainObject,UpLo>(m_matrix); | 
|  | } | 
|  |  | 
|  | /** \cholesky_module | 
|  | * \returns the Cholesky decomposition with full pivoting without square root of \c *this | 
|  | * \sa SelfAdjointView::ldlt() | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline const LDLT<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::ldlt() const | 
|  | { | 
|  | return LDLT<PlainObject>(derived()); | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_LDLT_H |