| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template<typename MatrixType> void array_for_matrix(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; | 
 |   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;  | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols); | 
 |  | 
 |   ColVectorType cv1 = ColVectorType::Random(rows); | 
 |   RowVectorType rv1 = RowVectorType::Random(cols); | 
 |    | 
 |   Scalar  s1 = internal::random<Scalar>(), | 
 |           s2 = internal::random<Scalar>(); | 
 |            | 
 |   // scalar addition | 
 |   VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array()); | 
 |   VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1); | 
 |   VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) ); | 
 |   m3 = m1; | 
 |   m3.array() += s2; | 
 |   VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix()); | 
 |   m3 = m1; | 
 |   m3.array() -= s1; | 
 |   VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix()); | 
 |  | 
 |   // reductions | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.squaredNorm()); | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.squaredNorm()); | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).squaredNorm()); | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).squaredNorm()); | 
 |   VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>())); | 
 |  | 
 |   // vector-wise ops | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); | 
 |    | 
 |   // empty objects | 
 |   VERIFY_IS_APPROX((m1.template block<0,Dynamic>(0,0,0,cols).colwise().sum()), RowVectorType::Zero(cols)); | 
 |   VERIFY_IS_APPROX((m1.template block<Dynamic,0>(0,0,rows,0).rowwise().sum()), ColVectorType::Zero(rows)); | 
 |   VERIFY_IS_APPROX((m1.template block<0,Dynamic>(0,0,0,cols).colwise().prod()), RowVectorType::Ones(cols)); | 
 |   VERIFY_IS_APPROX((m1.template block<Dynamic,0>(0,0,rows,0).rowwise().prod()), ColVectorType::Ones(rows)); | 
 |  | 
 |   VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(), RowVectorType::Zero(cols)); | 
 |   VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().sum(), ColVectorType::Zero(rows)); | 
 |   VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().prod(), RowVectorType::Ones(cols)); | 
 |   VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows)); | 
 |    | 
 |   // verify the const accessors exist | 
 |   const Scalar& ref_m1 = m.matrix().array().coeffRef(0); | 
 |   const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0); | 
 |   const Scalar& ref_a1 = m.array().matrix().coeffRef(0); | 
 |   const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0); | 
 |   VERIFY(&ref_a1 == &ref_m1); | 
 |   VERIFY(&ref_a2 == &ref_m2); | 
 |  | 
 |   // Check write accessors: | 
 |   m1.array().coeffRef(0,0) = 1; | 
 |   VERIFY_IS_APPROX(m1(0,0),Scalar(1)); | 
 |   m1.array()(0,0) = 2; | 
 |   VERIFY_IS_APPROX(m1(0,0),Scalar(2)); | 
 |   m1.array().matrix().coeffRef(0,0) = 3; | 
 |   VERIFY_IS_APPROX(m1(0,0),Scalar(3)); | 
 |   m1.array().matrix()(0,0) = 4; | 
 |   VERIFY_IS_APPROX(m1(0,0),Scalar(4)); | 
 | } | 
 |  | 
 | template<typename MatrixType> void comparisons(const MatrixType& m) | 
 | { | 
 |   using std::abs; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   Index r = internal::random<Index>(0, rows-1), | 
 |         c = internal::random<Index>(0, cols-1); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols); | 
 |  | 
 |   VERIFY(((m1.array() + Scalar(1)) > m1.array()).all()); | 
 |   VERIFY(((m1.array() - Scalar(1)) < m1.array()).all()); | 
 |   if (rows*cols>1) | 
 |   { | 
 |     m3 = m1; | 
 |     m3(r,c) += 1; | 
 |     VERIFY(! (m1.array() < m3.array()).all() ); | 
 |     VERIFY(! (m1.array() > m3.array()).all() ); | 
 |   } | 
 |  | 
 |   // comparisons to scalar | 
 |   VERIFY( (m1.array() != (m1(r,c)+1) ).any() ); | 
 |   VERIFY( (m1.array() > (m1(r,c)-1) ).any() ); | 
 |   VERIFY( (m1.array() < (m1(r,c)+1) ).any() ); | 
 |   VERIFY( (m1.array() == m1(r,c) ).any() ); | 
 |   VERIFY( m1.cwiseEqual(m1(r,c)).any() ); | 
 |  | 
 |   // test Select | 
 |   VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) ); | 
 |   VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) ); | 
 |   Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); | 
 |   for (int j=0; j<cols; ++j) | 
 |   for (int i=0; i<rows; ++i) | 
 |     m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j); | 
 |   VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array()) | 
 |                         .select(MatrixType::Zero(rows,cols),m1), m3); | 
 |   // shorter versions: | 
 |   VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array()) | 
 |                         .select(0,m1), m3); | 
 |   VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array()) | 
 |                         .select(m1,0), m3); | 
 |   // even shorter version: | 
 |   VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3); | 
 |  | 
 |   // count | 
 |   VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols); | 
 |  | 
 |   // and/or | 
 |   VERIFY( ((m1.array()<RealScalar(0)).matrix() && (m1.array()>RealScalar(0)).matrix()).count() == 0); | 
 |   VERIFY( ((m1.array()<RealScalar(0)).matrix() || (m1.array()>=RealScalar(0)).matrix()).count() == rows*cols); | 
 |   RealScalar a = m1.cwiseAbs().mean(); | 
 |   VERIFY( ((m1.array()<-a).matrix() || (m1.array()>a).matrix()).count() == (m1.cwiseAbs().array()>a).count()); | 
 |  | 
 |   typedef Matrix<Index, Dynamic, 1> VectorOfIndices; | 
 |  | 
 |   // TODO allows colwise/rowwise for array | 
 |   VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose()); | 
 |   VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols)); | 
 | } | 
 |  | 
 | template<typename VectorType> void lpNorm(const VectorType& v) | 
 | { | 
 |   using std::sqrt; | 
 |   typedef typename VectorType::RealScalar RealScalar; | 
 |   VectorType u = VectorType::Random(v.size()); | 
 |  | 
 |   if(v.size()==0) | 
 |   { | 
 |     VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), RealScalar(0)); | 
 |     VERIFY_IS_APPROX(u.template lpNorm<1>(), RealScalar(0)); | 
 |     VERIFY_IS_APPROX(u.template lpNorm<2>(), RealScalar(0)); | 
 |     VERIFY_IS_APPROX(u.template lpNorm<5>(), RealScalar(0)); | 
 |   } | 
 |   else | 
 |   { | 
 |     VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff()); | 
 |   } | 
 |  | 
 |   VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum()); | 
 |   VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum())); | 
 |   VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum()); | 
 | } | 
 |  | 
 | template<typename MatrixType> void cwise_min_max(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols); | 
 |  | 
 |   // min/max with array | 
 |   Scalar maxM1 = m1.maxCoeff(); | 
 |   Scalar minM1 = m1.minCoeff(); | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1))); | 
 |   VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1))); | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1))); | 
 |   VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1))); | 
 |  | 
 |   // min/max with scalar input | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1)); | 
 |   VERIFY_IS_APPROX(m1, m1.cwiseMin(maxM1)); | 
 |   VERIFY_IS_APPROX(-m1, (-m1).cwiseMin(-minM1)); | 
 |   VERIFY_IS_APPROX(-m1.array(), ((-m1).array().min)( -minM1)); | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1)); | 
 |   VERIFY_IS_APPROX(m1, m1.cwiseMax(minM1)); | 
 |   VERIFY_IS_APPROX(-m1, (-m1).cwiseMax(-maxM1)); | 
 |   VERIFY_IS_APPROX(-m1.array(), ((-m1).array().max)(-maxM1)); | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1).array(), (m1.array().min)( minM1)); | 
 |   VERIFY_IS_APPROX(m1.array(), (m1.array().min)( maxM1)); | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1).array(), (m1.array().max)( maxM1)); | 
 |   VERIFY_IS_APPROX(m1.array(), (m1.array().max)( minM1)); | 
 |  | 
 |   // Test NaN propagation for min/max. | 
 |   if (!NumTraits<Scalar>::IsInteger) { | 
 |     m1(0,0) = NumTraits<Scalar>::quiet_NaN(); | 
 |     // Elementwise. | 
 |     VERIFY((numext::isnan)(m1.template cwiseMax<PropagateNaN>(MatrixType::Constant(rows,cols, Scalar(1)))(0,0))); | 
 |     VERIFY((numext::isnan)(m1.template cwiseMin<PropagateNaN>(MatrixType::Constant(rows,cols, Scalar(1)))(0,0))); | 
 |     VERIFY(!(numext::isnan)(m1.template cwiseMax<PropagateNumbers>(MatrixType::Constant(rows,cols, Scalar(1)))(0,0))); | 
 |     VERIFY(!(numext::isnan)(m1.template cwiseMin<PropagateNumbers>(MatrixType::Constant(rows,cols, Scalar(1)))(0,0))); | 
 |  | 
 |     VERIFY((numext::isnan)(m1.array().template max<PropagateNaN>(MatrixType::Constant(rows,cols, Scalar(1)).array())(0,0))); | 
 |     VERIFY((numext::isnan)(m1.array().template min<PropagateNaN>(MatrixType::Constant(rows,cols, Scalar(1)).array())(0,0))); | 
 |     VERIFY(!(numext::isnan)(m1.array().template max<PropagateNumbers>(MatrixType::Constant(rows,cols, Scalar(1)).array())(0,0))); | 
 |     VERIFY(!(numext::isnan)(m1.array().template min<PropagateNumbers>(MatrixType::Constant(rows,cols, Scalar(1)).array())(0,0))); | 
 |  | 
 |     // Reductions. | 
 |     VERIFY((numext::isnan)(m1.template maxCoeff<PropagateNaN>())); | 
 |     VERIFY((numext::isnan)(m1.template minCoeff<PropagateNaN>())); | 
 |     if (m1.size() > 1) { | 
 |       VERIFY(!(numext::isnan)(m1.template maxCoeff<PropagateNumbers>())); | 
 |       VERIFY(!(numext::isnan)(m1.template minCoeff<PropagateNumbers>())); | 
 |     } else { | 
 |       VERIFY((numext::isnan)(m1.template maxCoeff<PropagateNumbers>())); | 
 |       VERIFY((numext::isnan)(m1.template minCoeff<PropagateNumbers>())); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixTraits> void resize(const MatrixTraits& t) | 
 | { | 
 |   typedef typename MatrixTraits::Scalar Scalar; | 
 |   typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; | 
 |   typedef Array<Scalar,Dynamic,Dynamic> Array2DType; | 
 |   typedef Matrix<Scalar,Dynamic,1> VectorType; | 
 |   typedef Array<Scalar,Dynamic,1> Array1DType; | 
 |  | 
 |   Index rows = t.rows(), cols = t.cols(); | 
 |  | 
 |   MatrixType m(rows,cols); | 
 |   VectorType v(rows); | 
 |   Array2DType a2(rows,cols); | 
 |   Array1DType a1(rows); | 
 |  | 
 |   m.array().resize(rows+1,cols+1); | 
 |   VERIFY(m.rows()==rows+1 && m.cols()==cols+1); | 
 |   a2.matrix().resize(rows+1,cols+1); | 
 |   VERIFY(a2.rows()==rows+1 && a2.cols()==cols+1); | 
 |   v.array().resize(cols); | 
 |   VERIFY(v.size()==cols); | 
 |   a1.matrix().resize(cols); | 
 |   VERIFY(a1.size()==cols); | 
 | } | 
 |  | 
 | template<int> | 
 | void regression_bug_654() | 
 | { | 
 |   ArrayXf a = RowVectorXf(3); | 
 |   VectorXf v = Array<float,1,Dynamic>(3); | 
 | } | 
 |  | 
 | // Check propagation of LvalueBit through Array/Matrix-Wrapper | 
 | template<int> | 
 | void regrrssion_bug_1410() | 
 | { | 
 |   const Matrix4i M; | 
 |   const Array4i A; | 
 |   ArrayWrapper<const Matrix4i> MA = M.array(); | 
 |   MA.row(0); | 
 |   MatrixWrapper<const Array4i> AM = A.matrix(); | 
 |   AM.row(0); | 
 |  | 
 |   VERIFY((internal::traits<ArrayWrapper<const Matrix4i> >::Flags&LvalueBit)==0); | 
 |   VERIFY((internal::traits<MatrixWrapper<const Array4i> >::Flags&LvalueBit)==0); | 
 |  | 
 |   VERIFY((internal::traits<ArrayWrapper<Matrix4i> >::Flags&LvalueBit)==LvalueBit); | 
 |   VERIFY((internal::traits<MatrixWrapper<Array4i> >::Flags&LvalueBit)==LvalueBit); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(array_for_matrix) | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( array_for_matrix(Matrix2f()) ); | 
 |     CALL_SUBTEST_3( array_for_matrix(Matrix4d()) ); | 
 |     CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |     CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |     CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |   } | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( comparisons(Matrix2f()) ); | 
 |     CALL_SUBTEST_3( comparisons(Matrix4d()) ); | 
 |     CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |     CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |   } | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( cwise_min_max(Matrix2f()) ); | 
 |     CALL_SUBTEST_3( cwise_min_max(Matrix4d()) ); | 
 |     CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |     CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |   } | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( lpNorm(Vector2f()) ); | 
 |     CALL_SUBTEST_7( lpNorm(Vector3d()) ); | 
 |     CALL_SUBTEST_8( lpNorm(Vector4f()) ); | 
 |     CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |     CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |   } | 
 |   CALL_SUBTEST_5( lpNorm(VectorXf(0)) ); | 
 |   CALL_SUBTEST_4( lpNorm(VectorXcf(0)) ); | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |     CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |     CALL_SUBTEST_6( resize(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |   } | 
 |   CALL_SUBTEST_6( regression_bug_654<0>() ); | 
 |   CALL_SUBTEST_6( regrrssion_bug_1410<0>() ); | 
 | } |