| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/Geometry> | 
 | #include <Eigen/LU> | 
 | #include <Eigen/SVD> | 
 |  | 
 |  | 
 | template<typename Scalar> | 
 | void verify_euler(const Matrix<Scalar,3,1>& ea, int i, int j, int k) | 
 | { | 
 |   typedef Matrix<Scalar,3,3> Matrix3; | 
 |   typedef Matrix<Scalar,3,1> Vector3; | 
 |   typedef AngleAxis<Scalar> AngleAxisx; | 
 |   using std::abs; | 
 |   Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k))); | 
 |   Vector3 eabis = m.eulerAngles(i, j, k); | 
 |   Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k)));  | 
 |   VERIFY_IS_APPROX(m,  mbis);  | 
 |   /* If I==K, and ea[1]==0, then there no unique solution. */  | 
 |   /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */  | 
 |   if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )  | 
 |     VERIFY((ea-eabis).norm() <= test_precision<Scalar>()); | 
 |    | 
 |   // approx_or_less_than does not work for 0 | 
 |   VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1))); | 
 |   VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI)); | 
 |   VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]); | 
 |   VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI)); | 
 |   VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]); | 
 |   VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI)); | 
 | } | 
 |  | 
 | template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea) | 
 | { | 
 |   verify_euler(ea, 0,1,2); | 
 |   verify_euler(ea, 0,1,0); | 
 |   verify_euler(ea, 0,2,1); | 
 |   verify_euler(ea, 0,2,0); | 
 |  | 
 |   verify_euler(ea, 1,2,0); | 
 |   verify_euler(ea, 1,2,1); | 
 |   verify_euler(ea, 1,0,2); | 
 |   verify_euler(ea, 1,0,1); | 
 |  | 
 |   verify_euler(ea, 2,0,1); | 
 |   verify_euler(ea, 2,0,2); | 
 |   verify_euler(ea, 2,1,0); | 
 |   verify_euler(ea, 2,1,2); | 
 | } | 
 |  | 
 | template<typename Scalar> void eulerangles() | 
 | { | 
 |   typedef Matrix<Scalar,3,3> Matrix3; | 
 |   typedef Matrix<Scalar,3,1> Vector3; | 
 |   typedef Array<Scalar,3,1> Array3; | 
 |   typedef Quaternion<Scalar> Quaternionx; | 
 |   typedef AngleAxis<Scalar> AngleAxisx; | 
 |  | 
 |   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
 |   Quaternionx q1; | 
 |   q1 = AngleAxisx(a, Vector3::Random().normalized()); | 
 |   Matrix3 m; | 
 |   m = q1; | 
 |    | 
 |   Vector3 ea = m.eulerAngles(0,1,2); | 
 |   check_all_var(ea); | 
 |   ea = m.eulerAngles(0,1,0); | 
 |   check_all_var(ea); | 
 |    | 
 |   // Check with purely random Quaternion: | 
 |   q1.coeffs() = Quaternionx::Coefficients::Random().normalized(); | 
 |   m = q1; | 
 |   ea = m.eulerAngles(0,1,2); | 
 |   check_all_var(ea); | 
 |   ea = m.eulerAngles(0,1,0); | 
 |   check_all_var(ea); | 
 |    | 
 |   // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi]. | 
 |   ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1); | 
 |   check_all_var(ea); | 
 |    | 
 |   ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI)); | 
 |   check_all_var(ea); | 
 |    | 
 |   ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI)); | 
 |   check_all_var(ea); | 
 |    | 
 |   ea[1] = 0; | 
 |   check_all_var(ea); | 
 |    | 
 |   ea.head(2).setZero(); | 
 |   check_all_var(ea); | 
 |    | 
 |   ea.setZero(); | 
 |   check_all_var(ea); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(geo_eulerangles) | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( eulerangles<float>() ); | 
 |     CALL_SUBTEST_2( eulerangles<double>() ); | 
 |   } | 
 | } |