| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | // discard stack allocation as that too bypasses malloc | 
 | #define EIGEN_STACK_ALLOCATION_LIMIT 0 | 
 | // heap allocation will raise an assert if enabled at runtime | 
 | #define EIGEN_RUNTIME_NO_MALLOC | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/Cholesky> | 
 | #include <Eigen/Eigenvalues> | 
 | #include <Eigen/LU> | 
 | #include <Eigen/QR> | 
 | #include <Eigen/SVD> | 
 |  | 
 | template<typename MatrixType> void nomalloc(const MatrixType& m) | 
 | { | 
 |   /* this test check no dynamic memory allocation are issued with fixed-size matrices | 
 |   */ | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols); | 
 |  | 
 |   Scalar s1 = internal::random<Scalar>(); | 
 |  | 
 |   Index r = internal::random<Index>(0, rows-1), | 
 |         c = internal::random<Index>(0, cols-1); | 
 |  | 
 |   VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2); | 
 |   VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); | 
 |   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix()); | 
 |   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2)); | 
 |    | 
 |   m2.col(0).noalias() = m1 * m1.col(0); | 
 |   m2.col(0).noalias() -= m1.adjoint() * m1.col(0); | 
 |   m2.col(0).noalias() -= m1 * m1.row(0).adjoint(); | 
 |   m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint(); | 
 |  | 
 |   m2.row(0).noalias() = m1.row(0) * m1; | 
 |   m2.row(0).noalias() -= m1.row(0) * m1.adjoint(); | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1; | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint(); | 
 |   VERIFY_IS_APPROX(m2,m2); | 
 |    | 
 |   m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0); | 
 |   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0); | 
 |   m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint(); | 
 |   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint(); | 
 |  | 
 |   m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>(); | 
 |   VERIFY_IS_APPROX(m2,m2); | 
 |    | 
 |   m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0); | 
 |   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0); | 
 |   m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint(); | 
 |   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint(); | 
 |  | 
 |   m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>(); | 
 |   VERIFY_IS_APPROX(m2,m2); | 
 |    | 
 |   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1); | 
 |   m2.template selfadjointView<Upper>().rankUpdate(m1.row(0),-1); | 
 |   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0)); // rank-2 | 
 |  | 
 |   // The following fancy matrix-matrix products are not safe yet regarding static allocation | 
 |   m2.template selfadjointView<Lower>().rankUpdate(m1); | 
 |   m2 += m2.template triangularView<Upper>() * m1; | 
 |   m2.template triangularView<Upper>() = m2 * m2; | 
 |   m1 += m1.template selfadjointView<Lower>() * m2; | 
 |   VERIFY_IS_APPROX(m2,m2); | 
 | } | 
 |  | 
 | template<typename Scalar> | 
 | void ctms_decompositions() | 
 | { | 
 |   const int maxSize = 16; | 
 |   const int size    = 12; | 
 |  | 
 |   typedef Eigen::Matrix<Scalar, | 
 |                         Eigen::Dynamic, Eigen::Dynamic, | 
 |                         0, | 
 |                         maxSize, maxSize> Matrix; | 
 |  | 
 |   typedef Eigen::Matrix<Scalar, | 
 |                         Eigen::Dynamic, 1, | 
 |                         0, | 
 |                         maxSize, 1> Vector; | 
 |  | 
 |   typedef Eigen::Matrix<std::complex<Scalar>, | 
 |                         Eigen::Dynamic, Eigen::Dynamic, | 
 |                         0, | 
 |                         maxSize, maxSize> ComplexMatrix; | 
 |  | 
 |   const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size)); | 
 |   Matrix X(size,size); | 
 |   const ComplexMatrix complexA(ComplexMatrix::Random(size, size)); | 
 |   const Matrix saA = A.adjoint() * A; | 
 |   const Vector b(Vector::Random(size)); | 
 |   Vector x(size); | 
 |  | 
 |   // Cholesky module | 
 |   Eigen::LLT<Matrix>  LLT;  LLT.compute(A); | 
 |   X = LLT.solve(B); | 
 |   x = LLT.solve(b); | 
 |   Eigen::LDLT<Matrix> LDLT; LDLT.compute(A); | 
 |   X = LDLT.solve(B); | 
 |   x = LDLT.solve(b); | 
 |  | 
 |   // Eigenvalues module | 
 |   Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;        hessDecomp.compute(complexA); | 
 |   Eigen::ComplexSchur<ComplexMatrix>            cSchur(size);      cSchur.compute(complexA); | 
 |   Eigen::ComplexEigenSolver<ComplexMatrix>      cEigSolver;        cEigSolver.compute(complexA); | 
 |   Eigen::EigenSolver<Matrix>                    eigSolver;         eigSolver.compute(A); | 
 |   Eigen::SelfAdjointEigenSolver<Matrix>         saEigSolver(size); saEigSolver.compute(saA); | 
 |   Eigen::Tridiagonalization<Matrix>             tridiag;           tridiag.compute(saA); | 
 |  | 
 |   // LU module | 
 |   Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A); | 
 |   X = ppLU.solve(B); | 
 |   x = ppLU.solve(b); | 
 |   Eigen::FullPivLU<Matrix>    fpLU; fpLU.compute(A); | 
 |   X = fpLU.solve(B); | 
 |   x = fpLU.solve(b); | 
 |  | 
 |   // QR module | 
 |   Eigen::HouseholderQR<Matrix>        hQR;  hQR.compute(A); | 
 |   X = hQR.solve(B); | 
 |   x = hQR.solve(b); | 
 |   Eigen::ColPivHouseholderQR<Matrix>  cpQR; cpQR.compute(A); | 
 |   X = cpQR.solve(B); | 
 |   x = cpQR.solve(b); | 
 |   Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A); | 
 |   // FIXME X = fpQR.solve(B); | 
 |   x = fpQR.solve(b); | 
 |  | 
 |   // SVD module | 
 |   Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV); | 
 | } | 
 |  | 
 | void test_zerosized() { | 
 |   // default constructors: | 
 |   Eigen::MatrixXd A; | 
 |   Eigen::VectorXd v; | 
 |   // explicit zero-sized: | 
 |   Eigen::ArrayXXd A0(0,0); | 
 |   Eigen::ArrayXd v0(0); | 
 |  | 
 |   // assigning empty objects to each other: | 
 |   A=A0; | 
 |   v=v0; | 
 | } | 
 |  | 
 | template<typename MatrixType> void test_reference(const MatrixType& m) { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   enum { Flag          =  MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor}; | 
 |   enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor}; | 
 |   Index rows = m.rows(), cols=m.cols(); | 
 |   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag         > MatrixX; | 
 |   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT; | 
 |   // Dynamic reference: | 
 |   typedef Eigen::Ref<const MatrixX  > Ref; | 
 |   typedef Eigen::Ref<const MatrixXT > RefT; | 
 |  | 
 |   Ref r1(m); | 
 |   Ref r2(m.block(rows/3, cols/4, rows/2, cols/2)); | 
 |   RefT r3(m.transpose()); | 
 |   RefT r4(m.topLeftCorner(rows/2, cols/2).transpose()); | 
 |  | 
 |   VERIFY_RAISES_ASSERT(RefT r5(m)); | 
 |   VERIFY_RAISES_ASSERT(Ref r6(m.transpose())); | 
 |   VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m)); | 
 |  | 
 |   // Copy constructors shall also never malloc | 
 |   Ref r8 = r1; | 
 |   RefT r9 = r3; | 
 |  | 
 |   // Initializing from a compatible Ref shall also never malloc | 
 |   Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10=r8, r11=m; | 
 |  | 
 |   // Initializing from an incompatible Ref will malloc: | 
 |   typedef Eigen::Ref<const MatrixX, Aligned> RefAligned; | 
 |   VERIFY_RAISES_ASSERT(RefAligned r12=r10); | 
 |   VERIFY_RAISES_ASSERT(Ref r13=r10); // r10 has more dynamic strides | 
 |  | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(nomalloc) | 
 | { | 
 |   // create some dynamic objects | 
 |   Eigen::MatrixXd M1 = MatrixXd::Random(3,3); | 
 |   Ref<const MatrixXd> R1 = 2.0*M1; // Ref requires temporary | 
 |  | 
 |   // from here on prohibit malloc: | 
 |   Eigen::internal::set_is_malloc_allowed(false); | 
 |  | 
 |   // check that our operator new is indeed called: | 
 |   VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3))); | 
 |   CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) ); | 
 |   CALL_SUBTEST_2(nomalloc(Matrix4d()) ); | 
 |   CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) ); | 
 |    | 
 |   // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms) | 
 |   CALL_SUBTEST_4(ctms_decompositions<float>()); | 
 |  | 
 |   CALL_SUBTEST_5(test_zerosized()); | 
 |  | 
 |   CALL_SUBTEST_6(test_reference(Matrix<float,32,32>())); | 
 |   CALL_SUBTEST_7(test_reference(R1)); | 
 |   CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2)); | 
 | } |