|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_AUTODIFF_JACOBIAN_H | 
|  | #define EIGEN_AUTODIFF_JACOBIAN_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen | 
|  | { | 
|  |  | 
|  | template<typename Functor> class AutoDiffJacobian : public Functor | 
|  | { | 
|  | public: | 
|  | AutoDiffJacobian() : Functor() {} | 
|  | AutoDiffJacobian(const Functor& f) : Functor(f) {} | 
|  |  | 
|  | // forward constructors | 
|  | template<typename... T> | 
|  | AutoDiffJacobian(const T& ...Values) : Functor(Values...) {} | 
|  |  | 
|  | typedef typename Functor::InputType InputType; | 
|  | typedef typename Functor::ValueType ValueType; | 
|  | typedef typename ValueType::Scalar Scalar; | 
|  |  | 
|  | enum { | 
|  | InputsAtCompileTime = InputType::RowsAtCompileTime, | 
|  | ValuesAtCompileTime = ValueType::RowsAtCompileTime | 
|  | }; | 
|  |  | 
|  | typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; | 
|  | typedef typename JacobianType::Index Index; | 
|  |  | 
|  | typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType; | 
|  | typedef AutoDiffScalar<DerivativeType> ActiveScalar; | 
|  |  | 
|  | typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput; | 
|  | typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue; | 
|  |  | 
|  | // Some compilers don't accept variadic parameters after a default parameter, | 
|  | // i.e., we can't just write _jac=0 but we need to overload operator(): | 
|  | EIGEN_STRONG_INLINE | 
|  | void operator() (const InputType& x, ValueType* v) const | 
|  | { | 
|  | this->operator()(x, v, 0); | 
|  | } | 
|  | template<typename... ParamsType> | 
|  | void operator() (const InputType& x, ValueType* v, JacobianType* _jac, | 
|  | const ParamsType&... Params) const | 
|  | { | 
|  | eigen_assert(v!=0); | 
|  |  | 
|  | if (!_jac) | 
|  | { | 
|  | Functor::operator()(x, v, Params...); | 
|  | return; | 
|  | } | 
|  |  | 
|  | JacobianType& jac = *_jac; | 
|  |  | 
|  | ActiveInput ax = x.template cast<ActiveScalar>(); | 
|  | ActiveValue av(jac.rows()); | 
|  |  | 
|  | if(InputsAtCompileTime==Dynamic) | 
|  | for (Index j=0; j<jac.rows(); j++) | 
|  | av[j].derivatives().resize(x.rows()); | 
|  |  | 
|  | for (Index i=0; i<jac.cols(); i++) | 
|  | ax[i].derivatives() = DerivativeType::Unit(x.rows(),i); | 
|  |  | 
|  | Functor::operator()(ax, &av, Params...); | 
|  |  | 
|  | for (Index i=0; i<jac.rows(); i++) | 
|  | { | 
|  | (*v)[i] = av[i].value(); | 
|  | jac.row(i) = av[i].derivatives(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_AUTODIFF_JACOBIAN_H |