| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_REF_H | 
 | #define EIGEN_REF_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename _PlainObjectType, int _Options, typename _StrideType> | 
 | struct traits<Ref<_PlainObjectType, _Options, _StrideType> > | 
 |   : public traits<Map<_PlainObjectType, _Options, _StrideType> > | 
 | { | 
 |   typedef _PlainObjectType PlainObjectType; | 
 |   typedef _StrideType StrideType; | 
 |   enum { | 
 |     Options = _Options, | 
 |     Flags = traits<Map<_PlainObjectType, _Options, _StrideType> >::Flags | NestByRefBit, | 
 |     Alignment = traits<Map<_PlainObjectType, _Options, _StrideType> >::Alignment | 
 |   }; | 
 |  | 
 |   template<typename Derived> struct match { | 
 |     enum { | 
 |       IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime, | 
 |       HasDirectAccess = internal::has_direct_access<Derived>::ret, | 
 |       StorageOrderMatch = IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)), | 
 |       InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic) | 
 |                       || int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime) | 
 |                       || (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1), | 
 |       OuterStrideMatch = IsVectorAtCompileTime | 
 |                       || int(StrideType::OuterStrideAtCompileTime)==int(Dynamic) || int(StrideType::OuterStrideAtCompileTime)==int(Derived::OuterStrideAtCompileTime), | 
 |       // NOTE, this indirection of evaluator<Derived>::Alignment is needed | 
 |       // to workaround a very strange bug in MSVC related to the instantiation | 
 |       // of has_*ary_operator in evaluator<CwiseNullaryOp>. | 
 |       // This line is surprisingly very sensitive. For instance, simply adding parenthesis | 
 |       // as "DerivedAlignment = (int(evaluator<Derived>::Alignment))," will make MSVC fail... | 
 |       DerivedAlignment = int(evaluator<Derived>::Alignment), | 
 |       AlignmentMatch = (int(traits<PlainObjectType>::Alignment)==int(Unaligned)) || (DerivedAlignment >= int(Alignment)), // FIXME the first condition is not very clear, it should be replaced by the required alignment | 
 |       ScalarTypeMatch = internal::is_same<typename PlainObjectType::Scalar, typename Derived::Scalar>::value, | 
 |       MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch && ScalarTypeMatch | 
 |     }; | 
 |     typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type; | 
 |   }; | 
 |    | 
 | }; | 
 |  | 
 | template<typename Derived> | 
 | struct traits<RefBase<Derived> > : public traits<Derived> {}; | 
 |  | 
 | } | 
 |  | 
 | template<typename Derived> class RefBase | 
 |  : public MapBase<Derived> | 
 | { | 
 |   typedef typename internal::traits<Derived>::PlainObjectType PlainObjectType; | 
 |   typedef typename internal::traits<Derived>::StrideType StrideType; | 
 |  | 
 | public: | 
 |  | 
 |   typedef MapBase<Derived> Base; | 
 |   EIGEN_DENSE_PUBLIC_INTERFACE(RefBase) | 
 |  | 
 |   EIGEN_DEVICE_FUNC inline Index innerStride() const | 
 |   { | 
 |     return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC inline Index outerStride() const | 
 |   { | 
 |     return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() | 
 |          : IsVectorAtCompileTime ? this->size() | 
 |          : int(Flags)&RowMajorBit ? this->cols() | 
 |          : this->rows(); | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC RefBase() | 
 |     : Base(0,RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime), | 
 |       // Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values: | 
 |       m_stride(StrideType::OuterStrideAtCompileTime==Dynamic?0:StrideType::OuterStrideAtCompileTime, | 
 |                StrideType::InnerStrideAtCompileTime==Dynamic?0:StrideType::InnerStrideAtCompileTime) | 
 |   {} | 
 |    | 
 |   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(RefBase) | 
 |  | 
 | protected: | 
 |  | 
 |   typedef Stride<StrideType::OuterStrideAtCompileTime,StrideType::InnerStrideAtCompileTime> StrideBase; | 
 |  | 
 |   // Resolves inner stride if default 0. | 
 |   static EIGEN_DEVICE_FUNC Index resolveInnerStride(Index inner) { | 
 |     if (inner == 0) { | 
 |       return 1; | 
 |     } | 
 |     return inner; | 
 |   } | 
 |    | 
 |   // Resolves outer stride if default 0. | 
 |   static EIGEN_DEVICE_FUNC Index resolveOuterStride(Index inner, Index outer, Index rows, Index cols, bool isVectorAtCompileTime, bool isRowMajor) { | 
 |     if (outer == 0) { | 
 |       if (isVectorAtCompileTime) { | 
 |         outer = inner * rows * cols; | 
 |       } else if (isRowMajor) { | 
 |         outer = inner * cols; | 
 |       } else { | 
 |         outer = inner * rows; | 
 |       } | 
 |     } | 
 |     return outer; | 
 |   } | 
 |  | 
 |   // Returns true if construction is valid, false if there is a stride mismatch, | 
 |   // and fails if there is a size mismatch. | 
 |   template<typename Expression> | 
 |   EIGEN_DEVICE_FUNC bool construct(Expression& expr) | 
 |   { | 
 |     // Check matrix sizes.  If this is a compile-time vector, we do allow | 
 |     // implicitly transposing. | 
 |     EIGEN_STATIC_ASSERT( | 
 |       EIGEN_PREDICATE_SAME_MATRIX_SIZE(PlainObjectType, Expression) | 
 |       // If it is a vector, the transpose sizes might match. | 
 |       || ( PlainObjectType::IsVectorAtCompileTime | 
 |             && ((int(PlainObjectType::RowsAtCompileTime)==Eigen::Dynamic | 
 |               || int(Expression::ColsAtCompileTime)==Eigen::Dynamic | 
 |               || int(PlainObjectType::RowsAtCompileTime)==int(Expression::ColsAtCompileTime)) | 
 |             &&  (int(PlainObjectType::ColsAtCompileTime)==Eigen::Dynamic | 
 |               || int(Expression::RowsAtCompileTime)==Eigen::Dynamic | 
 |               || int(PlainObjectType::ColsAtCompileTime)==int(Expression::RowsAtCompileTime)))), | 
 |       YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES | 
 |     ) | 
 |  | 
 |     // Determine runtime rows and columns. | 
 |     Index rows = expr.rows(); | 
 |     Index cols = expr.cols(); | 
 |     if(PlainObjectType::RowsAtCompileTime==1) | 
 |     { | 
 |       eigen_assert(expr.rows()==1 || expr.cols()==1); | 
 |       rows = 1; | 
 |       cols = expr.size(); | 
 |     } | 
 |     else if(PlainObjectType::ColsAtCompileTime==1) | 
 |     { | 
 |       eigen_assert(expr.rows()==1 || expr.cols()==1); | 
 |       rows = expr.size(); | 
 |       cols = 1; | 
 |     } | 
 |     // Verify that the sizes are valid. | 
 |     eigen_assert( | 
 |       (PlainObjectType::RowsAtCompileTime == Dynamic) || (PlainObjectType::RowsAtCompileTime == rows)); | 
 |     eigen_assert( | 
 |       (PlainObjectType::ColsAtCompileTime == Dynamic) || (PlainObjectType::ColsAtCompileTime == cols)); | 
 |    | 
 |    | 
 |     // If this is a vector, we might be transposing, which means that stride should swap. | 
 |     const bool transpose = PlainObjectType::IsVectorAtCompileTime && (rows != expr.rows()); | 
 |     // If the storage format differs, we also need to swap the stride. | 
 |     const bool row_major = ((PlainObjectType::Flags)&RowMajorBit) != 0; | 
 |     const bool expr_row_major = (Expression::Flags&RowMajorBit) != 0; | 
 |     const bool storage_differs =  (row_major != expr_row_major); | 
 |  | 
 |     const bool swap_stride = (transpose != storage_differs); | 
 |      | 
 |     // Determine expr's actual strides, resolving any defaults if zero. | 
 |     const Index expr_inner_actual = resolveInnerStride(expr.innerStride()); | 
 |     const Index expr_outer_actual = resolveOuterStride(expr_inner_actual,  | 
 |                                                        expr.outerStride(), | 
 |                                                        expr.rows(), | 
 |                                                        expr.cols(),  | 
 |                                                        Expression::IsVectorAtCompileTime != 0, | 
 |                                                        expr_row_major); | 
 |                                                         | 
 |     // If this is a column-major row vector or row-major column vector, the inner-stride | 
 |     // is arbitrary, so set it to either the compile-time inner stride or 1. | 
 |     const bool row_vector = (rows == 1); | 
 |     const bool col_vector = (cols == 1); | 
 |     const Index inner_stride =  | 
 |         ( (!row_major && row_vector) || (row_major && col_vector) ) ?  | 
 |             ( StrideType::InnerStrideAtCompileTime > 0 ? Index(StrideType::InnerStrideAtCompileTime) : 1)  | 
 |             : swap_stride ? expr_outer_actual : expr_inner_actual; | 
 |                | 
 |     // If this is a column-major column vector or row-major row vector, the outer-stride | 
 |     // is arbitrary, so set it to either the compile-time outer stride or vector size. | 
 |     const Index outer_stride =  | 
 |       ( (!row_major && col_vector) || (row_major && row_vector) ) ?  | 
 |           ( StrideType::OuterStrideAtCompileTime > 0 ? Index(StrideType::OuterStrideAtCompileTime) : rows * cols * inner_stride)  | 
 |           : swap_stride ? expr_inner_actual : expr_outer_actual; | 
 |    | 
 |     // Check if given inner/outer strides are compatible with compile-time strides. | 
 |     const bool inner_valid = (StrideType::InnerStrideAtCompileTime == Dynamic) | 
 |         || (resolveInnerStride(Index(StrideType::InnerStrideAtCompileTime)) == inner_stride); | 
 |     if (!inner_valid) { | 
 |       return false; | 
 |     } | 
 |      | 
 |     const bool outer_valid = (StrideType::OuterStrideAtCompileTime == Dynamic) | 
 |         || (resolveOuterStride( | 
 |               inner_stride,  | 
 |               Index(StrideType::OuterStrideAtCompileTime), | 
 |               rows, cols, PlainObjectType::IsVectorAtCompileTime != 0, | 
 |               row_major) | 
 |             == outer_stride); | 
 |     if (!outer_valid) { | 
 |       return false; | 
 |     } | 
 |      | 
 |     ::new (static_cast<Base*>(this)) Base(expr.data(), rows, cols); | 
 |     ::new (&m_stride) StrideBase( | 
 |       (StrideType::OuterStrideAtCompileTime == 0) ? 0 : outer_stride, | 
 |       (StrideType::InnerStrideAtCompileTime == 0) ? 0 : inner_stride ); | 
 |     return true; | 
 |   } | 
 |  | 
 |   StrideBase m_stride; | 
 | }; | 
 |  | 
 | /** \class Ref | 
 |   * \ingroup Core_Module | 
 |   * | 
 |   * \brief A matrix or vector expression mapping an existing expression | 
 |   * | 
 |   * \tparam PlainObjectType the equivalent matrix type of the mapped data | 
 |   * \tparam Options specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned. | 
 |   *                 The default is \c #Unaligned. | 
 |   * \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1), | 
 |   *                   but accepts a variable outer stride (leading dimension). | 
 |   *                   This can be overridden by specifying strides. | 
 |   *                   The type passed here must be a specialization of the Stride template, see examples below. | 
 |   * | 
 |   * This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the number of copies. | 
 |   * A Ref<> object can represent either a const expression or a l-value: | 
 |   * \code | 
 |   * // in-out argument: | 
 |   * void foo1(Ref<VectorXf> x); | 
 |   * | 
 |   * // read-only const argument: | 
 |   * void foo2(const Ref<const VectorXf>& x); | 
 |   * \endcode | 
 |   * | 
 |   * In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered. | 
 |   * By default, a Ref<VectorXf> can reference any dense vector expression of float having a contiguous memory layout. | 
 |   * Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float whose column's elements are contiguously stored with | 
 |   * the possibility to have a constant space in-between each column, i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension) | 
 |   * can be greater than the number of rows. | 
 |   * | 
 |   * In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function. | 
 |   * Here are some examples: | 
 |   * \code | 
 |   * MatrixXf A; | 
 |   * VectorXf a; | 
 |   * foo1(a.head());             // OK | 
 |   * foo1(A.col());              // OK | 
 |   * foo1(A.row());              // Compilation error because here innerstride!=1 | 
 |   * foo2(A.row());              // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object | 
 |   * foo2(A.row().transpose());  // The row is copied into a contiguous temporary | 
 |   * foo2(2*a);                  // The expression is evaluated into a temporary | 
 |   * foo2(A.col().segment(2,4)); // No temporary | 
 |   * \endcode | 
 |   * | 
 |   * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters. | 
 |   * Here is an example accepting an innerstride!=1: | 
 |   * \code | 
 |   * // in-out argument: | 
 |   * void foo3(Ref<VectorXf,0,InnerStride<> > x); | 
 |   * foo3(A.row());              // OK | 
 |   * \endcode | 
 |   * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involve more | 
 |   * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overload internally calling a | 
 |   * template function, e.g.: | 
 |   * \code | 
 |   * // in the .h: | 
 |   * void foo(const Ref<MatrixXf>& A); | 
 |   * void foo(const Ref<MatrixXf,0,Stride<> >& A); | 
 |   * | 
 |   * // in the .cpp: | 
 |   * template<typename TypeOfA> void foo_impl(const TypeOfA& A) { | 
 |   *     ... // crazy code goes here | 
 |   * } | 
 |   * void foo(const Ref<MatrixXf>& A) { foo_impl(A); } | 
 |   * void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); } | 
 |   * \endcode | 
 |   * | 
 |   * See also the following stackoverflow questions for further references: | 
 |   *  - <a href="http://stackoverflow.com/questions/21132538/correct-usage-of-the-eigenref-class">Correct usage of the Eigen::Ref<> class</a> | 
 |   * | 
 |   * \sa PlainObjectBase::Map(), \ref TopicStorageOrders | 
 |   */ | 
 | template<typename PlainObjectType, int Options, typename StrideType> class Ref | 
 |   : public RefBase<Ref<PlainObjectType, Options, StrideType> > | 
 | { | 
 |   private: | 
 |     typedef internal::traits<Ref> Traits; | 
 |     template<typename Derived> | 
 |     EIGEN_DEVICE_FUNC inline Ref(const PlainObjectBase<Derived>& expr, | 
 |                                  typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0); | 
 |   public: | 
 |  | 
 |     typedef RefBase<Ref> Base; | 
 |     EIGEN_DENSE_PUBLIC_INTERFACE(Ref) | 
 |  | 
 |  | 
 |     #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |     template<typename Derived> | 
 |     EIGEN_DEVICE_FUNC inline Ref(PlainObjectBase<Derived>& expr, | 
 |                                  typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0) | 
 |     { | 
 |       EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); | 
 |       // Construction must pass since we will not create temprary storage in the non-const case. | 
 |       const bool success = Base::construct(expr.derived()); | 
 |       EIGEN_UNUSED_VARIABLE(success) | 
 |       eigen_assert(success); | 
 |     } | 
 |     template<typename Derived> | 
 |     EIGEN_DEVICE_FUNC inline Ref(const DenseBase<Derived>& expr, | 
 |                                  typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0) | 
 |     #else | 
 |     /** Implicit constructor from any dense expression */ | 
 |     template<typename Derived> | 
 |     inline Ref(DenseBase<Derived>& expr) | 
 |     #endif | 
 |     { | 
 |       EIGEN_STATIC_ASSERT(bool(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); | 
 |       EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); | 
 |       EIGEN_STATIC_ASSERT(!Derived::IsPlainObjectBase,THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); | 
 |       // Construction must pass since we will not create temporary storage in the non-const case. | 
 |       const bool success = Base::construct(expr.const_cast_derived()); | 
 |       EIGEN_UNUSED_VARIABLE(success) | 
 |       eigen_assert(success); | 
 |     } | 
 |  | 
 |     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref) | 
 |  | 
 | }; | 
 |  | 
 | // this is the const ref version | 
 | template<typename TPlainObjectType, int Options, typename StrideType> class Ref<const TPlainObjectType, Options, StrideType> | 
 |   : public RefBase<Ref<const TPlainObjectType, Options, StrideType> > | 
 | { | 
 |     typedef internal::traits<Ref> Traits; | 
 |   public: | 
 |  | 
 |     typedef RefBase<Ref> Base; | 
 |     EIGEN_DENSE_PUBLIC_INTERFACE(Ref) | 
 |  | 
 |     template<typename Derived> | 
 |     EIGEN_DEVICE_FUNC inline Ref(const DenseBase<Derived>& expr, | 
 |                                  typename internal::enable_if<bool(Traits::template match<Derived>::ScalarTypeMatch),Derived>::type* = 0) | 
 |     { | 
 | //      std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," << match_helper<Derived>::InnerStrideMatch << "\n"; | 
 | //      std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n"; | 
 | //      std::cout << int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n"; | 
 |       construct(expr.derived(), typename Traits::template match<Derived>::type()); | 
 |     } | 
 |  | 
 |     EIGEN_DEVICE_FUNC inline Ref(const Ref& other) : Base(other) { | 
 |       // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy | 
 |     } | 
 |  | 
 |     template<typename OtherRef> | 
 |     EIGEN_DEVICE_FUNC inline Ref(const RefBase<OtherRef>& other) { | 
 |       construct(other.derived(), typename Traits::template match<OtherRef>::type()); | 
 |     } | 
 |  | 
 |   protected: | 
 |  | 
 |     template<typename Expression> | 
 |     EIGEN_DEVICE_FUNC void construct(const Expression& expr,internal::true_type) | 
 |     { | 
 |       // Check if we can use the underlying expr's storage directly, otherwise call the copy version. | 
 |       if (!Base::construct(expr)) { | 
 |         construct(expr, internal::false_type()); | 
 |       } | 
 |     } | 
 |  | 
 |     template<typename Expression> | 
 |     EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::false_type) | 
 |     { | 
 |       internal::call_assignment_no_alias(m_object,expr,internal::assign_op<Scalar,Scalar>()); | 
 |       Base::construct(m_object); | 
 |     } | 
 |  | 
 |   protected: | 
 |     TPlainObjectType m_object; | 
 | }; | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_REF_H |