|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_QUATERNION_H | 
|  | #define EIGEN_QUATERNION_H | 
|  | namespace Eigen { | 
|  |  | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Definition of QuaternionBase<Derived> | 
|  | * The implementation is at the end of the file | 
|  | ***************************************************************************/ | 
|  |  | 
|  | namespace internal { | 
|  | template<typename Other, | 
|  | int OtherRows=Other::RowsAtCompileTime, | 
|  | int OtherCols=Other::ColsAtCompileTime> | 
|  | struct quaternionbase_assign_impl; | 
|  | } | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * \class QuaternionBase | 
|  | * \brief Base class for quaternion expressions | 
|  | * \tparam Derived derived type (CRTP) | 
|  | * \sa class Quaternion | 
|  | */ | 
|  | template<class Derived> | 
|  | class QuaternionBase : public RotationBase<Derived, 3> | 
|  | { | 
|  | public: | 
|  | typedef RotationBase<Derived, 3> Base; | 
|  |  | 
|  | using Base::operator*; | 
|  | using Base::derived; | 
|  |  | 
|  | typedef typename internal::traits<Derived>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef typename internal::traits<Derived>::Coefficients Coefficients; | 
|  | typedef typename Coefficients::CoeffReturnType CoeffReturnType; | 
|  | typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit), | 
|  | Scalar&, CoeffReturnType>::type NonConstCoeffReturnType; | 
|  |  | 
|  |  | 
|  | enum { | 
|  | Flags = Eigen::internal::traits<Derived>::Flags | 
|  | }; | 
|  |  | 
|  | // typedef typename Matrix<Scalar,4,1> Coefficients; | 
|  | /** the type of a 3D vector */ | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | /** the equivalent rotation matrix type */ | 
|  | typedef Matrix<Scalar,3,3> Matrix3; | 
|  | /** the equivalent angle-axis type */ | 
|  | typedef AngleAxis<Scalar> AngleAxisType; | 
|  |  | 
|  |  | 
|  |  | 
|  | /** \returns the \c x coefficient */ | 
|  | EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); } | 
|  | /** \returns the \c y coefficient */ | 
|  | EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); } | 
|  | /** \returns the \c z coefficient */ | 
|  | EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); } | 
|  | /** \returns the \c w coefficient */ | 
|  | EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); } | 
|  |  | 
|  | /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */ | 
|  | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); } | 
|  | /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */ | 
|  | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); } | 
|  | /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */ | 
|  | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); } | 
|  | /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */ | 
|  | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); } | 
|  |  | 
|  | /** \returns a read-only vector expression of the imaginary part (x,y,z) */ | 
|  | EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); } | 
|  |  | 
|  | /** \returns a vector expression of the imaginary part (x,y,z) */ | 
|  | EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); } | 
|  |  | 
|  | /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ | 
|  | EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); } | 
|  |  | 
|  | /** \returns a vector expression of the coefficients (x,y,z,w) */ | 
|  | EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); | 
|  | template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other); | 
|  |  | 
|  | // disabled this copy operator as it is giving very strange compilation errors when compiling | 
|  | // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's | 
|  | // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase | 
|  | // we didn't have to add, in addition to templated operator=, such a non-templated copy operator. | 
|  | //  Derived& operator=(const QuaternionBase& other) | 
|  | //  { return operator=<Derived>(other); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa); | 
|  | template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m); | 
|  |  | 
|  | /** \returns a quaternion representing an identity rotation | 
|  | * \sa MatrixBase::Identity() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); } | 
|  |  | 
|  | /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; } | 
|  |  | 
|  | /** \returns the squared norm of the quaternion's coefficients | 
|  | * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } | 
|  |  | 
|  | /** \returns the norm of the quaternion's coefficients | 
|  | * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); } | 
|  |  | 
|  | /** Normalizes the quaternion \c *this | 
|  | * \sa normalized(), MatrixBase::normalize() */ | 
|  | EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); } | 
|  | /** \returns a normalized copy of \c *this | 
|  | * \sa normalize(), MatrixBase::normalized() */ | 
|  | EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); } | 
|  |  | 
|  | /** \returns the dot product of \c *this and \a other | 
|  | * Geometrically speaking, the dot product of two unit quaternions | 
|  | * corresponds to the cosine of half the angle between the two rotations. | 
|  | * \sa angularDistance() | 
|  | */ | 
|  | template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); } | 
|  |  | 
|  | template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const; | 
|  |  | 
|  | /** \returns an equivalent 3x3 rotation matrix */ | 
|  | EIGEN_DEVICE_FUNC inline Matrix3 toRotationMatrix() const; | 
|  |  | 
|  | /** \returns the quaternion which transform \a a into \a b through a rotation */ | 
|  | template<typename Derived1, typename Derived2> | 
|  | EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); | 
|  |  | 
|  | template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const; | 
|  | template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q); | 
|  |  | 
|  | /** \returns the quaternion describing the inverse rotation */ | 
|  | EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const; | 
|  |  | 
|  | /** \returns the conjugated quaternion */ | 
|  | EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const; | 
|  |  | 
|  | template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const; | 
|  |  | 
|  | /** \returns true if each coefficients of \c *this and \a other are all exactly equal. | 
|  | * \warning When using floating point scalar values you probably should rather use a | 
|  | *          fuzzy comparison such as isApprox() | 
|  | * \sa isApprox(), operator!= */ | 
|  | template<class OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline bool operator==(const QuaternionBase<OtherDerived>& other) const | 
|  | { return coeffs() == other.coeffs(); } | 
|  |  | 
|  | /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. | 
|  | * \warning When using floating point scalar values you probably should rather use a | 
|  | *          fuzzy comparison such as isApprox() | 
|  | * \sa isApprox(), operator== */ | 
|  | template<class OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline bool operator!=(const QuaternionBase<OtherDerived>& other) const | 
|  | { return coeffs() != other.coeffs(); } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | template<class OtherDerived> | 
|  | EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const | 
|  | { return coeffs().isApprox(other.coeffs(), prec); } | 
|  |  | 
|  | /** return the result vector of \a v through the rotation*/ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template<typename NewScalarType> | 
|  | EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const; | 
|  |  | 
|  | #else | 
|  |  | 
|  | template<typename NewScalarType> | 
|  | EIGEN_DEVICE_FUNC inline | 
|  | typename internal::enable_if<internal::is_same<Scalar,NewScalarType>::value,const Derived&>::type cast() const | 
|  | { | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | template<typename NewScalarType> | 
|  | EIGEN_DEVICE_FUNC inline | 
|  | typename internal::enable_if<!internal::is_same<Scalar,NewScalarType>::value,Quaternion<NewScalarType> >::type cast() const | 
|  | { | 
|  | return Quaternion<NewScalarType>(coeffs().template cast<NewScalarType>()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef EIGEN_NO_IO | 
|  | friend std::ostream& operator<<(std::ostream& s, const QuaternionBase<Derived>& q) { | 
|  | s << q.x() << "i + " << q.y() << "j + " << q.z() << "k" << " + " << q.w(); | 
|  | return s; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_QUATERNIONBASE_PLUGIN | 
|  | # include EIGEN_QUATERNIONBASE_PLUGIN | 
|  | #endif | 
|  | protected: | 
|  | EIGEN_DEFAULT_COPY_CONSTRUCTOR(QuaternionBase) | 
|  | EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(QuaternionBase) | 
|  | }; | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Definition/implementation of Quaternion<Scalar> | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class Quaternion | 
|  | * | 
|  | * \brief The quaternion class used to represent 3D orientations and rotations | 
|  | * | 
|  | * \tparam _Scalar the scalar type, i.e., the type of the coefficients | 
|  | * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. | 
|  | * | 
|  | * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of | 
|  | * orientations and rotations of objects in three dimensions. Compared to other representations | 
|  | * like Euler angles or 3x3 matrices, quaternions offer the following advantages: | 
|  | * \li \b compact storage (4 scalars) | 
|  | * \li \b efficient to compose (28 flops), | 
|  | * \li \b stable spherical interpolation | 
|  | * | 
|  | * The following two typedefs are provided for convenience: | 
|  | * \li \c Quaternionf for \c float | 
|  | * \li \c Quaterniond for \c double | 
|  | * | 
|  | * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized. | 
|  | * | 
|  | * \sa  class AngleAxis, class Transform | 
|  | */ | 
|  |  | 
|  | namespace internal { | 
|  | template<typename _Scalar,int _Options> | 
|  | struct traits<Quaternion<_Scalar,_Options> > | 
|  | { | 
|  | typedef Quaternion<_Scalar,_Options> PlainObject; | 
|  | typedef _Scalar Scalar; | 
|  | typedef Matrix<_Scalar,4,1,_Options> Coefficients; | 
|  | enum{ | 
|  | Alignment = internal::traits<Coefficients>::Alignment, | 
|  | Flags = LvalueBit | 
|  | }; | 
|  | }; | 
|  | } | 
|  |  | 
|  | template<typename _Scalar, int _Options> | 
|  | class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> > | 
|  | { | 
|  | public: | 
|  | typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base; | 
|  | enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 }; | 
|  |  | 
|  | typedef _Scalar Scalar; | 
|  |  | 
|  | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) | 
|  | using Base::operator*=; | 
|  |  | 
|  | typedef typename internal::traits<Quaternion>::Coefficients Coefficients; | 
|  | typedef typename Base::AngleAxisType AngleAxisType; | 
|  |  | 
|  | /** Default constructor leaving the quaternion uninitialized. */ | 
|  | EIGEN_DEVICE_FUNC inline Quaternion() {} | 
|  |  | 
|  | /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from | 
|  | * its four coefficients \a w, \a x, \a y and \a z. | 
|  | * | 
|  | * \warning Note the order of the arguments: the real \a w coefficient first, | 
|  | * while internally the coefficients are stored in the following order: | 
|  | * [\c x, \c y, \c z, \c w] | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){} | 
|  |  | 
|  | /** Constructs and initialize a quaternion from the array data */ | 
|  | EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {} | 
|  |  | 
|  | /** Copy constructor */ | 
|  | template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); } | 
|  |  | 
|  | /** Constructs and initializes a quaternion from the angle-axis \a aa */ | 
|  | EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } | 
|  |  | 
|  | /** Constructs and initializes a quaternion from either: | 
|  | *  - a rotation matrix expression, | 
|  | *  - a 4D vector expression representing quaternion coefficients. | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } | 
|  |  | 
|  | /** Explicit copy constructor with scalar conversion */ | 
|  | template<typename OtherScalar, int OtherOptions> | 
|  | EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) | 
|  | { m_coeffs = other.coeffs().template cast<Scalar>(); } | 
|  |  | 
|  | #if EIGEN_HAS_RVALUE_REFERENCES | 
|  | // We define a copy constructor, which means we don't get an implicit move constructor or assignment operator. | 
|  | /** Default move constructor */ | 
|  | EIGEN_DEVICE_FUNC inline Quaternion(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value) | 
|  | : m_coeffs(std::move(other.coeffs())) | 
|  | {} | 
|  |  | 
|  | /** Default move assignment operator */ | 
|  | EIGEN_DEVICE_FUNC Quaternion& operator=(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value) | 
|  | { | 
|  | m_coeffs = std::move(other.coeffs()); | 
|  | return *this; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | EIGEN_DEVICE_FUNC static Quaternion UnitRandom(); | 
|  |  | 
|  | template<typename Derived1, typename Derived2> | 
|  | EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;} | 
|  | EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} | 
|  |  | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment)) | 
|  |  | 
|  | #ifdef EIGEN_QUATERNION_PLUGIN | 
|  | # include EIGEN_QUATERNION_PLUGIN | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | Coefficients m_coeffs; | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | static EIGEN_STRONG_INLINE void _check_template_params() | 
|  | { | 
|  | EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, | 
|  | INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | } | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module | 
|  | * single precision quaternion type */ | 
|  | typedef Quaternion<float> Quaternionf; | 
|  | /** \ingroup Geometry_Module | 
|  | * double precision quaternion type */ | 
|  | typedef Quaternion<double> Quaterniond; | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Specialization of Map<Quaternion<Scalar>> | 
|  | ***************************************************************************/ | 
|  |  | 
|  | namespace internal { | 
|  | template<typename _Scalar, int _Options> | 
|  | struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > | 
|  | { | 
|  | typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients; | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  | template<typename _Scalar, int _Options> | 
|  | struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > | 
|  | { | 
|  | typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients; | 
|  | typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase; | 
|  | enum { | 
|  | Flags = TraitsBase::Flags & ~LvalueBit | 
|  | }; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /** \ingroup Geometry_Module | 
|  | * \brief Quaternion expression mapping a constant memory buffer | 
|  | * | 
|  | * \tparam _Scalar the type of the Quaternion coefficients | 
|  | * \tparam _Options see class Map | 
|  | * | 
|  | * This is a specialization of class Map for Quaternion. This class allows to view | 
|  | * a 4 scalar memory buffer as an Eigen's Quaternion object. | 
|  | * | 
|  | * \sa class Map, class Quaternion, class QuaternionBase | 
|  | */ | 
|  | template<typename _Scalar, int _Options> | 
|  | class Map<const Quaternion<_Scalar>, _Options > | 
|  | : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > | 
|  | { | 
|  | public: | 
|  | typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base; | 
|  |  | 
|  | typedef _Scalar Scalar; | 
|  | typedef typename internal::traits<Map>::Coefficients Coefficients; | 
|  | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) | 
|  | using Base::operator*=; | 
|  |  | 
|  | /** Constructs a Mapped Quaternion object from the pointer \a coeffs | 
|  | * | 
|  | * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: | 
|  | * \code *coeffs == {x, y, z, w} \endcode | 
|  | * | 
|  | * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ | 
|  | EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} | 
|  |  | 
|  | protected: | 
|  | const Coefficients m_coeffs; | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module | 
|  | * \brief Expression of a quaternion from a memory buffer | 
|  | * | 
|  | * \tparam _Scalar the type of the Quaternion coefficients | 
|  | * \tparam _Options see class Map | 
|  | * | 
|  | * This is a specialization of class Map for Quaternion. This class allows to view | 
|  | * a 4 scalar memory buffer as an Eigen's  Quaternion object. | 
|  | * | 
|  | * \sa class Map, class Quaternion, class QuaternionBase | 
|  | */ | 
|  | template<typename _Scalar, int _Options> | 
|  | class Map<Quaternion<_Scalar>, _Options > | 
|  | : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> > | 
|  | { | 
|  | public: | 
|  | typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base; | 
|  |  | 
|  | typedef _Scalar Scalar; | 
|  | typedef typename internal::traits<Map>::Coefficients Coefficients; | 
|  | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) | 
|  | using Base::operator*=; | 
|  |  | 
|  | /** Constructs a Mapped Quaternion object from the pointer \a coeffs | 
|  | * | 
|  | * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: | 
|  | * \code *coeffs == {x, y, z, w} \endcode | 
|  | * | 
|  | * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ | 
|  | EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } | 
|  | EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } | 
|  |  | 
|  | protected: | 
|  | Coefficients m_coeffs; | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module | 
|  | * Map an unaligned array of single precision scalars as a quaternion */ | 
|  | typedef Map<Quaternion<float>, 0>         QuaternionMapf; | 
|  | /** \ingroup Geometry_Module | 
|  | * Map an unaligned array of double precision scalars as a quaternion */ | 
|  | typedef Map<Quaternion<double>, 0>        QuaternionMapd; | 
|  | /** \ingroup Geometry_Module | 
|  | * Map a 16-byte aligned array of single precision scalars as a quaternion */ | 
|  | typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf; | 
|  | /** \ingroup Geometry_Module | 
|  | * Map a 16-byte aligned array of double precision scalars as a quaternion */ | 
|  | typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd; | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Implementation of QuaternionBase methods | 
|  | ***************************************************************************/ | 
|  |  | 
|  | // Generic Quaternion * Quaternion product | 
|  | // This product can be specialized for a given architecture via the Arch template argument. | 
|  | namespace internal { | 
|  | template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product | 
|  | { | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){ | 
|  | return Quaternion<Scalar> | 
|  | ( | 
|  | a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), | 
|  | a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), | 
|  | a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), | 
|  | a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() | 
|  | ); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /** \returns the concatenation of two rotations as a quaternion-quaternion product */ | 
|  | template <class Derived> | 
|  | template <class OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar> | 
|  | QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|  | return internal::quat_product<Architecture::Target, Derived, OtherDerived, | 
|  | typename internal::traits<Derived>::Scalar>::run(*this, other); | 
|  | } | 
|  |  | 
|  | /** \sa operator*(Quaternion) */ | 
|  | template <class Derived> | 
|  | template <class OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other) | 
|  | { | 
|  | derived() = derived() * other.derived(); | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** Rotation of a vector by a quaternion. | 
|  | * \remarks If the quaternion is used to rotate several points (>1) | 
|  | * then it is much more efficient to first convert it to a 3x3 Matrix. | 
|  | * Comparison of the operation cost for n transformations: | 
|  | *   - Quaternion2:    30n | 
|  | *   - Via a Matrix3: 24 + 15n | 
|  | */ | 
|  | template <class Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 | 
|  | QuaternionBase<Derived>::_transformVector(const Vector3& v) const | 
|  | { | 
|  | // Note that this algorithm comes from the optimization by hand | 
|  | // of the conversion to a Matrix followed by a Matrix/Vector product. | 
|  | // It appears to be much faster than the common algorithm found | 
|  | // in the literature (30 versus 39 flops). It also requires two | 
|  | // Vector3 as temporaries. | 
|  | Vector3 uv = this->vec().cross(v); | 
|  | uv += uv; | 
|  | return v + this->w() * uv + this->vec().cross(uv); | 
|  | } | 
|  |  | 
|  | template<class Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other) | 
|  | { | 
|  | coeffs() = other.coeffs(); | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | template<class Derived> | 
|  | template<class OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other) | 
|  | { | 
|  | coeffs() = other.coeffs(); | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this | 
|  | */ | 
|  | template<class Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) | 
|  | { | 
|  | EIGEN_USING_STD(cos) | 
|  | EIGEN_USING_STD(sin) | 
|  | Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings | 
|  | this->w() = cos(ha); | 
|  | this->vec() = sin(ha) * aa.axis(); | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** Set \c *this from the expression \a xpr: | 
|  | *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion | 
|  | *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix | 
|  | *     and \a xpr is converted to a quaternion | 
|  | */ | 
|  |  | 
|  | template<class Derived> | 
|  | template<class MatrixDerived> | 
|  | EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|  | internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to | 
|  | * be normalized, otherwise the result is undefined. | 
|  | */ | 
|  | template<class Derived> | 
|  | EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3 | 
|  | QuaternionBase<Derived>::toRotationMatrix(void) const | 
|  | { | 
|  | // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) | 
|  | // if not inlined then the cost of the return by value is huge ~ +35%, | 
|  | // however, not inlining this function is an order of magnitude slower, so | 
|  | // it has to be inlined, and so the return by value is not an issue | 
|  | Matrix3 res; | 
|  |  | 
|  | const Scalar tx  = Scalar(2)*this->x(); | 
|  | const Scalar ty  = Scalar(2)*this->y(); | 
|  | const Scalar tz  = Scalar(2)*this->z(); | 
|  | const Scalar twx = tx*this->w(); | 
|  | const Scalar twy = ty*this->w(); | 
|  | const Scalar twz = tz*this->w(); | 
|  | const Scalar txx = tx*this->x(); | 
|  | const Scalar txy = ty*this->x(); | 
|  | const Scalar txz = tz*this->x(); | 
|  | const Scalar tyy = ty*this->y(); | 
|  | const Scalar tyz = tz*this->y(); | 
|  | const Scalar tzz = tz*this->z(); | 
|  |  | 
|  | res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); | 
|  | res.coeffRef(0,1) = txy-twz; | 
|  | res.coeffRef(0,2) = txz+twy; | 
|  | res.coeffRef(1,0) = txy+twz; | 
|  | res.coeffRef(1,1) = Scalar(1)-(txx+tzz); | 
|  | res.coeffRef(1,2) = tyz-twx; | 
|  | res.coeffRef(2,0) = txz-twy; | 
|  | res.coeffRef(2,1) = tyz+twx; | 
|  | res.coeffRef(2,2) = Scalar(1)-(txx+tyy); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** Sets \c *this to be a quaternion representing a rotation between | 
|  | * the two arbitrary vectors \a a and \a b. In other words, the built | 
|  | * rotation represent a rotation sending the line of direction \a a | 
|  | * to the line of direction \a b, both lines passing through the origin. | 
|  | * | 
|  | * \returns a reference to \c *this. | 
|  | * | 
|  | * Note that the two input vectors do \b not have to be normalized, and | 
|  | * do not need to have the same norm. | 
|  | */ | 
|  | template<class Derived> | 
|  | template<typename Derived1, typename Derived2> | 
|  | EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) | 
|  | { | 
|  | EIGEN_USING_STD(sqrt) | 
|  | Vector3 v0 = a.normalized(); | 
|  | Vector3 v1 = b.normalized(); | 
|  | Scalar c = v1.dot(v0); | 
|  |  | 
|  | // if dot == -1, vectors are nearly opposites | 
|  | // => accurately compute the rotation axis by computing the | 
|  | //    intersection of the two planes. This is done by solving: | 
|  | //       x^T v0 = 0 | 
|  | //       x^T v1 = 0 | 
|  | //    under the constraint: | 
|  | //       ||x|| = 1 | 
|  | //    which yields a singular value problem | 
|  | if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision()) | 
|  | { | 
|  | c = numext::maxi(c,Scalar(-1)); | 
|  | Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); | 
|  | JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); | 
|  | Vector3 axis = svd.matrixV().col(2); | 
|  |  | 
|  | Scalar w2 = (Scalar(1)+c)*Scalar(0.5); | 
|  | this->w() = sqrt(w2); | 
|  | this->vec() = axis * sqrt(Scalar(1) - w2); | 
|  | return derived(); | 
|  | } | 
|  | Vector3 axis = v0.cross(v1); | 
|  | Scalar s = sqrt((Scalar(1)+c)*Scalar(2)); | 
|  | Scalar invs = Scalar(1)/s; | 
|  | this->vec() = axis * invs; | 
|  | this->w() = s * Scalar(0.5); | 
|  |  | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** \returns a random unit quaternion following a uniform distribution law on SO(3) | 
|  | * | 
|  | * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html | 
|  | */ | 
|  | template<typename Scalar, int Options> | 
|  | EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom() | 
|  | { | 
|  | EIGEN_USING_STD(sqrt) | 
|  | EIGEN_USING_STD(sin) | 
|  | EIGEN_USING_STD(cos) | 
|  | const Scalar u1 = internal::random<Scalar>(0, 1), | 
|  | u2 = internal::random<Scalar>(0, 2*EIGEN_PI), | 
|  | u3 = internal::random<Scalar>(0, 2*EIGEN_PI); | 
|  | const Scalar a = sqrt(Scalar(1) - u1), | 
|  | b = sqrt(u1); | 
|  | return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** Returns a quaternion representing a rotation between | 
|  | * the two arbitrary vectors \a a and \a b. In other words, the built | 
|  | * rotation represent a rotation sending the line of direction \a a | 
|  | * to the line of direction \a b, both lines passing through the origin. | 
|  | * | 
|  | * \returns resulting quaternion | 
|  | * | 
|  | * Note that the two input vectors do \b not have to be normalized, and | 
|  | * do not need to have the same norm. | 
|  | */ | 
|  | template<typename Scalar, int Options> | 
|  | template<typename Derived1, typename Derived2> | 
|  | EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) | 
|  | { | 
|  | Quaternion quat; | 
|  | quat.setFromTwoVectors(a, b); | 
|  | return quat; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** \returns the multiplicative inverse of \c *this | 
|  | * Note that in most cases, i.e., if you simply want the opposite rotation, | 
|  | * and/or the quaternion is normalized, then it is enough to use the conjugate. | 
|  | * | 
|  | * \sa QuaternionBase::conjugate() | 
|  | */ | 
|  | template <class Derived> | 
|  | EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const | 
|  | { | 
|  | // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ?? | 
|  | Scalar n2 = this->squaredNorm(); | 
|  | if (n2 > Scalar(0)) | 
|  | return Quaternion<Scalar>(conjugate().coeffs() / n2); | 
|  | else | 
|  | { | 
|  | // return an invalid result to flag the error | 
|  | return Quaternion<Scalar>(Coefficients::Zero()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Generic conjugate of a Quaternion | 
|  | namespace internal { | 
|  | template<int Arch, class Derived, typename Scalar> struct quat_conj | 
|  | { | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){ | 
|  | return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z()); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse | 
|  | * if the quaternion is normalized. | 
|  | * The conjugate of a quaternion represents the opposite rotation. | 
|  | * | 
|  | * \sa Quaternion2::inverse() | 
|  | */ | 
|  | template <class Derived> | 
|  | EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> | 
|  | QuaternionBase<Derived>::conjugate() const | 
|  | { | 
|  | return internal::quat_conj<Architecture::Target, Derived, | 
|  | typename internal::traits<Derived>::Scalar>::run(*this); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** \returns the angle (in radian) between two rotations | 
|  | * \sa dot() | 
|  | */ | 
|  | template <class Derived> | 
|  | template <class OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar | 
|  | QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const | 
|  | { | 
|  | EIGEN_USING_STD(atan2) | 
|  | Quaternion<Scalar> d = (*this) * other.conjugate(); | 
|  | return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) ); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /** \returns the spherical linear interpolation between the two quaternions | 
|  | * \c *this and \a other at the parameter \a t in [0;1]. | 
|  | * | 
|  | * This represents an interpolation for a constant motion between \c *this and \a other, | 
|  | * see also http://en.wikipedia.org/wiki/Slerp. | 
|  | */ | 
|  | template <class Derived> | 
|  | template <class OtherDerived> | 
|  | EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar> | 
|  | QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const | 
|  | { | 
|  | EIGEN_USING_STD(acos) | 
|  | EIGEN_USING_STD(sin) | 
|  | const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); | 
|  | Scalar d = this->dot(other); | 
|  | Scalar absD = numext::abs(d); | 
|  |  | 
|  | Scalar scale0; | 
|  | Scalar scale1; | 
|  |  | 
|  | if(absD>=one) | 
|  | { | 
|  | scale0 = Scalar(1) - t; | 
|  | scale1 = t; | 
|  | } | 
|  | else | 
|  | { | 
|  | // theta is the angle between the 2 quaternions | 
|  | Scalar theta = acos(absD); | 
|  | Scalar sinTheta = sin(theta); | 
|  |  | 
|  | scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta; | 
|  | scale1 = sin( ( t * theta) ) / sinTheta; | 
|  | } | 
|  | if(d<Scalar(0)) scale1 = -scale1; | 
|  |  | 
|  | return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // set from a rotation matrix | 
|  | template<typename Other> | 
|  | struct quaternionbase_assign_impl<Other,3,3> | 
|  | { | 
|  | typedef typename Other::Scalar Scalar; | 
|  | template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat) | 
|  | { | 
|  | const typename internal::nested_eval<Other,2>::type mat(a_mat); | 
|  | EIGEN_USING_STD(sqrt) | 
|  | // This algorithm comes from  "Quaternion Calculus and Fast Animation", | 
|  | // Ken Shoemake, 1987 SIGGRAPH course notes | 
|  | Scalar t = mat.trace(); | 
|  | if (t > Scalar(0)) | 
|  | { | 
|  | t = sqrt(t + Scalar(1.0)); | 
|  | q.w() = Scalar(0.5)*t; | 
|  | t = Scalar(0.5)/t; | 
|  | q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; | 
|  | q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; | 
|  | q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; | 
|  | } | 
|  | else | 
|  | { | 
|  | Index i = 0; | 
|  | if (mat.coeff(1,1) > mat.coeff(0,0)) | 
|  | i = 1; | 
|  | if (mat.coeff(2,2) > mat.coeff(i,i)) | 
|  | i = 2; | 
|  | Index j = (i+1)%3; | 
|  | Index k = (j+1)%3; | 
|  |  | 
|  | t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); | 
|  | q.coeffs().coeffRef(i) = Scalar(0.5) * t; | 
|  | t = Scalar(0.5)/t; | 
|  | q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; | 
|  | q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; | 
|  | q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // set from a vector of coefficients assumed to be a quaternion | 
|  | template<typename Other> | 
|  | struct quaternionbase_assign_impl<Other,4,1> | 
|  | { | 
|  | typedef typename Other::Scalar Scalar; | 
|  | template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec) | 
|  | { | 
|  | q.coeffs() = vec; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_QUATERNION_H |