|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_CONJUGATE_GRADIENT_H | 
|  | #define EIGEN_CONJUGATE_GRADIENT_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \internal Low-level conjugate gradient algorithm | 
|  | * \param mat The matrix A | 
|  | * \param rhs The right hand side vector b | 
|  | * \param x On input and initial solution, on output the computed solution. | 
|  | * \param precond A preconditioner being able to efficiently solve for an | 
|  | *                approximation of Ax=b (regardless of b) | 
|  | * \param iters On input the max number of iteration, on output the number of performed iterations. | 
|  | * \param tol_error On input the tolerance error, on output an estimation of the relative error. | 
|  | */ | 
|  | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> | 
|  | EIGEN_DONT_INLINE | 
|  | void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, | 
|  | const Preconditioner& precond, Index& iters, | 
|  | typename Dest::RealScalar& tol_error) | 
|  | { | 
|  | using std::sqrt; | 
|  | using std::abs; | 
|  | typedef typename Dest::RealScalar RealScalar; | 
|  | typedef typename Dest::Scalar Scalar; | 
|  | typedef Matrix<Scalar,Dynamic,1> VectorType; | 
|  |  | 
|  | RealScalar tol = tol_error; | 
|  | Index maxIters = iters; | 
|  |  | 
|  | Index n = mat.cols(); | 
|  |  | 
|  | VectorType residual = rhs - mat * x; //initial residual | 
|  |  | 
|  | RealScalar rhsNorm2 = rhs.squaredNorm(); | 
|  | if(rhsNorm2 == 0) | 
|  | { | 
|  | x.setZero(); | 
|  | iters = 0; | 
|  | tol_error = 0; | 
|  | return; | 
|  | } | 
|  | const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); | 
|  | RealScalar threshold = numext::maxi(RealScalar(tol*tol*rhsNorm2),considerAsZero); | 
|  | RealScalar residualNorm2 = residual.squaredNorm(); | 
|  | if (residualNorm2 < threshold) | 
|  | { | 
|  | iters = 0; | 
|  | tol_error = sqrt(residualNorm2 / rhsNorm2); | 
|  | return; | 
|  | } | 
|  |  | 
|  | VectorType p(n); | 
|  | p = precond.solve(residual);      // initial search direction | 
|  |  | 
|  | VectorType z(n), tmp(n); | 
|  | RealScalar absNew = numext::real(residual.dot(p));  // the square of the absolute value of r scaled by invM | 
|  | Index i = 0; | 
|  | while(i < maxIters) | 
|  | { | 
|  | tmp.noalias() = mat * p;                    // the bottleneck of the algorithm | 
|  |  | 
|  | Scalar alpha = absNew / p.dot(tmp);         // the amount we travel on dir | 
|  | x += alpha * p;                             // update solution | 
|  | residual -= alpha * tmp;                    // update residual | 
|  |  | 
|  | residualNorm2 = residual.squaredNorm(); | 
|  | if(residualNorm2 < threshold) | 
|  | break; | 
|  |  | 
|  | z = precond.solve(residual);                // approximately solve for "A z = residual" | 
|  |  | 
|  | RealScalar absOld = absNew; | 
|  | absNew = numext::real(residual.dot(z));     // update the absolute value of r | 
|  | RealScalar beta = absNew / absOld;          // calculate the Gram-Schmidt value used to create the new search direction | 
|  | p = z + beta * p;                           // update search direction | 
|  | i++; | 
|  | } | 
|  | tol_error = sqrt(residualNorm2 / rhsNorm2); | 
|  | iters = i; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | template< typename _MatrixType, int _UpLo=Lower, | 
|  | typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > | 
|  | class ConjugateGradient; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template< typename _MatrixType, int _UpLo, typename _Preconditioner> | 
|  | struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> > | 
|  | { | 
|  | typedef _MatrixType MatrixType; | 
|  | typedef _Preconditioner Preconditioner; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** \ingroup IterativeLinearSolvers_Module | 
|  | * \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems | 
|  | * | 
|  | * This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm. | 
|  | * The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse. | 
|  | * | 
|  | * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix. | 
|  | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower, | 
|  | *               \c Upper, or \c Lower|Upper in which the full matrix entries will be considered. | 
|  | *               Default is \c Lower, best performance is \c Lower|Upper. | 
|  | * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() | 
|  | * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations | 
|  | * and NumTraits<Scalar>::epsilon() for the tolerance. | 
|  | * | 
|  | * The tolerance corresponds to the relative residual error: |Ax-b|/|b| | 
|  | * | 
|  | * \b Performance: Even though the default value of \c _UpLo is \c Lower, significantly higher performance is | 
|  | * achieved when using a complete matrix and \b Lower|Upper as the \a _UpLo template parameter. Moreover, in this | 
|  | * case multi-threading can be exploited if the user code is compiled with OpenMP enabled. | 
|  | * See \ref TopicMultiThreading for details. | 
|  | * | 
|  | * This class can be used as the direct solver classes. Here is a typical usage example: | 
|  | \code | 
|  | int n = 10000; | 
|  | VectorXd x(n), b(n); | 
|  | SparseMatrix<double> A(n,n); | 
|  | // fill A and b | 
|  | ConjugateGradient<SparseMatrix<double>, Lower|Upper> cg; | 
|  | cg.compute(A); | 
|  | x = cg.solve(b); | 
|  | std::cout << "#iterations:     " << cg.iterations() << std::endl; | 
|  | std::cout << "estimated error: " << cg.error()      << std::endl; | 
|  | // update b, and solve again | 
|  | x = cg.solve(b); | 
|  | \endcode | 
|  | * | 
|  | * By default the iterations start with x=0 as an initial guess of the solution. | 
|  | * One can control the start using the solveWithGuess() method. | 
|  | * | 
|  | * ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. | 
|  | * | 
|  | * \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner | 
|  | */ | 
|  | template< typename _MatrixType, int _UpLo, typename _Preconditioner> | 
|  | class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> > | 
|  | { | 
|  | typedef IterativeSolverBase<ConjugateGradient> Base; | 
|  | using Base::matrix; | 
|  | using Base::m_error; | 
|  | using Base::m_iterations; | 
|  | using Base::m_info; | 
|  | using Base::m_isInitialized; | 
|  | public: | 
|  | typedef _MatrixType MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef _Preconditioner Preconditioner; | 
|  |  | 
|  | enum { | 
|  | UpLo = _UpLo | 
|  | }; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** Default constructor. */ | 
|  | ConjugateGradient() : Base() {} | 
|  |  | 
|  | /** Initialize the solver with matrix \a A for further \c Ax=b solving. | 
|  | * | 
|  | * This constructor is a shortcut for the default constructor followed | 
|  | * by a call to compute(). | 
|  | * | 
|  | * \warning this class stores a reference to the matrix A as well as some | 
|  | * precomputed values that depend on it. Therefore, if \a A is changed | 
|  | * this class becomes invalid. Call compute() to update it with the new | 
|  | * matrix A, or modify a copy of A. | 
|  | */ | 
|  | template<typename MatrixDerived> | 
|  | explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {} | 
|  |  | 
|  | ~ConjugateGradient() {} | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const | 
|  | { | 
|  | typedef typename Base::MatrixWrapper MatrixWrapper; | 
|  | typedef typename Base::ActualMatrixType ActualMatrixType; | 
|  | enum { | 
|  | TransposeInput  =   (!MatrixWrapper::MatrixFree) | 
|  | &&  (UpLo==(Lower|Upper)) | 
|  | &&  (!MatrixType::IsRowMajor) | 
|  | &&  (!NumTraits<Scalar>::IsComplex) | 
|  | }; | 
|  | typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper; | 
|  | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY); | 
|  | typedef typename internal::conditional<UpLo==(Lower|Upper), | 
|  | RowMajorWrapper, | 
|  | typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type | 
|  | >::type SelfAdjointWrapper; | 
|  |  | 
|  | m_iterations = Base::maxIterations(); | 
|  | m_error = Base::m_tolerance; | 
|  |  | 
|  | RowMajorWrapper row_mat(matrix()); | 
|  | internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b, x, Base::m_preconditioner, m_iterations, m_error); | 
|  | m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; | 
|  | } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | }; | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_CONJUGATE_GRADIENT_H |