|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SPARSELU_GEMM_KERNEL_H | 
|  | #define EIGEN_SPARSELU_GEMM_KERNEL_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  |  | 
|  | /** \internal | 
|  | * A general matrix-matrix product kernel optimized for the SparseLU factorization. | 
|  | *  - A, B, and C must be column major | 
|  | *  - lda and ldc must be multiples of the respective packet size | 
|  | *  - C must have the same alignment as A | 
|  | */ | 
|  | template<typename Scalar> | 
|  | EIGEN_DONT_INLINE | 
|  | void sparselu_gemm(Index m, Index n, Index d, const Scalar* A, Index lda, const Scalar* B, Index ldb, Scalar* C, Index ldc) | 
|  | { | 
|  | using namespace Eigen::internal; | 
|  |  | 
|  | typedef typename packet_traits<Scalar>::type Packet; | 
|  | enum { | 
|  | NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, | 
|  | PacketSize = packet_traits<Scalar>::size, | 
|  | PM = 8,                             // peeling in M | 
|  | RN = 2,                             // register blocking | 
|  | RK = NumberOfRegisters>=16 ? 4 : 2, // register blocking | 
|  | BM = 4096/sizeof(Scalar),           // number of rows of A-C per chunk | 
|  | SM = PM*PacketSize                  // step along M | 
|  | }; | 
|  | Index d_end = (d/RK)*RK;    // number of columns of A (rows of B) suitable for full register blocking | 
|  | Index n_end = (n/RN)*RN;    // number of columns of B-C suitable for processing RN columns at once | 
|  | Index i0 = internal::first_default_aligned(A,m); | 
|  |  | 
|  | eigen_internal_assert(((lda%PacketSize)==0) && ((ldc%PacketSize)==0) && (i0==internal::first_default_aligned(C,m))); | 
|  |  | 
|  | // handle the non aligned rows of A and C without any optimization: | 
|  | for(Index i=0; i<i0; ++i) | 
|  | { | 
|  | for(Index j=0; j<n; ++j) | 
|  | { | 
|  | Scalar c = C[i+j*ldc]; | 
|  | for(Index k=0; k<d; ++k) | 
|  | c += B[k+j*ldb] * A[i+k*lda]; | 
|  | C[i+j*ldc] = c; | 
|  | } | 
|  | } | 
|  | // process the remaining rows per chunk of BM rows | 
|  | for(Index ib=i0; ib<m; ib+=BM) | 
|  | { | 
|  | Index actual_b = std::min<Index>(BM, m-ib);                 // actual number of rows | 
|  | Index actual_b_end1 = (actual_b/SM)*SM;                   // actual number of rows suitable for peeling | 
|  | Index actual_b_end2 = (actual_b/PacketSize)*PacketSize;   // actual number of rows suitable for vectorization | 
|  |  | 
|  | // Let's process two columns of B-C at once | 
|  | for(Index j=0; j<n_end; j+=RN) | 
|  | { | 
|  | const Scalar* Bc0 = B+(j+0)*ldb; | 
|  | const Scalar* Bc1 = B+(j+1)*ldb; | 
|  |  | 
|  | for(Index k=0; k<d_end; k+=RK) | 
|  | { | 
|  |  | 
|  | // load and expand a RN x RK block of B | 
|  | Packet b00, b10, b20, b30, b01, b11, b21, b31; | 
|  | { b00 = pset1<Packet>(Bc0[0]); } | 
|  | { b10 = pset1<Packet>(Bc0[1]); } | 
|  | if(RK==4) { b20 = pset1<Packet>(Bc0[2]); } | 
|  | if(RK==4) { b30 = pset1<Packet>(Bc0[3]); } | 
|  | { b01 = pset1<Packet>(Bc1[0]); } | 
|  | { b11 = pset1<Packet>(Bc1[1]); } | 
|  | if(RK==4) { b21 = pset1<Packet>(Bc1[2]); } | 
|  | if(RK==4) { b31 = pset1<Packet>(Bc1[3]); } | 
|  |  | 
|  | Packet a0, a1, a2, a3, c0, c1, t0, t1; | 
|  |  | 
|  | const Scalar* A0 = A+ib+(k+0)*lda; | 
|  | const Scalar* A1 = A+ib+(k+1)*lda; | 
|  | const Scalar* A2 = A+ib+(k+2)*lda; | 
|  | const Scalar* A3 = A+ib+(k+3)*lda; | 
|  |  | 
|  | Scalar* C0 = C+ib+(j+0)*ldc; | 
|  | Scalar* C1 = C+ib+(j+1)*ldc; | 
|  |  | 
|  | a0 = pload<Packet>(A0); | 
|  | a1 = pload<Packet>(A1); | 
|  | if(RK==4) | 
|  | { | 
|  | a2 = pload<Packet>(A2); | 
|  | a3 = pload<Packet>(A3); | 
|  | } | 
|  | else | 
|  | { | 
|  | // workaround "may be used uninitialized in this function" warning | 
|  | a2 = a3 = a0; | 
|  | } | 
|  |  | 
|  | #define KMADD(c, a, b, tmp) {tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);} | 
|  | #define WORK(I)  \ | 
|  | c0 = pload<Packet>(C0+i+(I)*PacketSize);    \ | 
|  | c1 = pload<Packet>(C1+i+(I)*PacketSize);    \ | 
|  | KMADD(c0, a0, b00, t0)                      \ | 
|  | KMADD(c1, a0, b01, t1)                      \ | 
|  | a0 = pload<Packet>(A0+i+(I+1)*PacketSize);  \ | 
|  | KMADD(c0, a1, b10, t0)                      \ | 
|  | KMADD(c1, a1, b11, t1)                      \ | 
|  | a1 = pload<Packet>(A1+i+(I+1)*PacketSize);  \ | 
|  | if(RK==4){ KMADD(c0, a2, b20, t0)                     }\ | 
|  | if(RK==4){ KMADD(c1, a2, b21, t1)                     }\ | 
|  | if(RK==4){ a2 = pload<Packet>(A2+i+(I+1)*PacketSize); }\ | 
|  | if(RK==4){ KMADD(c0, a3, b30, t0)                     }\ | 
|  | if(RK==4){ KMADD(c1, a3, b31, t1)                     }\ | 
|  | if(RK==4){ a3 = pload<Packet>(A3+i+(I+1)*PacketSize); }\ | 
|  | pstore(C0+i+(I)*PacketSize, c0);            \ | 
|  | pstore(C1+i+(I)*PacketSize, c1) | 
|  |  | 
|  | // process rows of A' - C' with aggressive vectorization and peeling | 
|  | for(Index i=0; i<actual_b_end1; i+=PacketSize*8) | 
|  | { | 
|  | EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL1"); | 
|  | prefetch((A0+i+(5)*PacketSize)); | 
|  | prefetch((A1+i+(5)*PacketSize)); | 
|  | if(RK==4) prefetch((A2+i+(5)*PacketSize)); | 
|  | if(RK==4) prefetch((A3+i+(5)*PacketSize)); | 
|  |  | 
|  | WORK(0); | 
|  | WORK(1); | 
|  | WORK(2); | 
|  | WORK(3); | 
|  | WORK(4); | 
|  | WORK(5); | 
|  | WORK(6); | 
|  | WORK(7); | 
|  | } | 
|  | // process the remaining rows with vectorization only | 
|  | for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize) | 
|  | { | 
|  | WORK(0); | 
|  | } | 
|  | #undef WORK | 
|  | // process the remaining rows without vectorization | 
|  | for(Index i=actual_b_end2; i<actual_b; ++i) | 
|  | { | 
|  | if(RK==4) | 
|  | { | 
|  | C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3]; | 
|  | C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1]+A2[i]*Bc1[2]+A3[i]*Bc1[3]; | 
|  | } | 
|  | else | 
|  | { | 
|  | C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]; | 
|  | C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | Bc0 += RK; | 
|  | Bc1 += RK; | 
|  | } // peeled loop on k | 
|  | } // peeled loop on the columns j | 
|  | // process the last column (we now perform a matrix-vector product) | 
|  | if((n-n_end)>0) | 
|  | { | 
|  | const Scalar* Bc0 = B+(n-1)*ldb; | 
|  |  | 
|  | for(Index k=0; k<d_end; k+=RK) | 
|  | { | 
|  |  | 
|  | // load and expand a 1 x RK block of B | 
|  | Packet b00, b10, b20, b30; | 
|  | b00 = pset1<Packet>(Bc0[0]); | 
|  | b10 = pset1<Packet>(Bc0[1]); | 
|  | if(RK==4) b20 = pset1<Packet>(Bc0[2]); | 
|  | if(RK==4) b30 = pset1<Packet>(Bc0[3]); | 
|  |  | 
|  | Packet a0, a1, a2, a3, c0, t0/*, t1*/; | 
|  |  | 
|  | const Scalar* A0 = A+ib+(k+0)*lda; | 
|  | const Scalar* A1 = A+ib+(k+1)*lda; | 
|  | const Scalar* A2 = A+ib+(k+2)*lda; | 
|  | const Scalar* A3 = A+ib+(k+3)*lda; | 
|  |  | 
|  | Scalar* C0 = C+ib+(n_end)*ldc; | 
|  |  | 
|  | a0 = pload<Packet>(A0); | 
|  | a1 = pload<Packet>(A1); | 
|  | if(RK==4) | 
|  | { | 
|  | a2 = pload<Packet>(A2); | 
|  | a3 = pload<Packet>(A3); | 
|  | } | 
|  | else | 
|  | { | 
|  | // workaround "may be used uninitialized in this function" warning | 
|  | a2 = a3 = a0; | 
|  | } | 
|  |  | 
|  | #define WORK(I) \ | 
|  | c0 = pload<Packet>(C0+i+(I)*PacketSize);     \ | 
|  | KMADD(c0, a0, b00, t0)                       \ | 
|  | a0 = pload<Packet>(A0+i+(I+1)*PacketSize);   \ | 
|  | KMADD(c0, a1, b10, t0)                       \ | 
|  | a1 = pload<Packet>(A1+i+(I+1)*PacketSize);   \ | 
|  | if(RK==4){ KMADD(c0, a2, b20, t0)                      }\ | 
|  | if(RK==4){ a2 = pload<Packet>(A2+i+(I+1)*PacketSize);  }\ | 
|  | if(RK==4){ KMADD(c0, a3, b30, t0)                      }\ | 
|  | if(RK==4){ a3 = pload<Packet>(A3+i+(I+1)*PacketSize);  }\ | 
|  | pstore(C0+i+(I)*PacketSize, c0); | 
|  |  | 
|  | // aggressive vectorization and peeling | 
|  | for(Index i=0; i<actual_b_end1; i+=PacketSize*8) | 
|  | { | 
|  | EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL2"); | 
|  | WORK(0); | 
|  | WORK(1); | 
|  | WORK(2); | 
|  | WORK(3); | 
|  | WORK(4); | 
|  | WORK(5); | 
|  | WORK(6); | 
|  | WORK(7); | 
|  | } | 
|  | // vectorization only | 
|  | for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize) | 
|  | { | 
|  | WORK(0); | 
|  | } | 
|  | // remaining scalars | 
|  | for(Index i=actual_b_end2; i<actual_b; ++i) | 
|  | { | 
|  | if(RK==4) | 
|  | C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3]; | 
|  | else | 
|  | C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]; | 
|  | } | 
|  |  | 
|  | Bc0 += RK; | 
|  | #undef WORK | 
|  | } | 
|  | } | 
|  |  | 
|  | // process the last columns of A, corresponding to the last rows of B | 
|  | Index rd = d-d_end; | 
|  | if(rd>0) | 
|  | { | 
|  | for(Index j=0; j<n; ++j) | 
|  | { | 
|  | enum { | 
|  | Alignment = PacketSize>1 ? Aligned : 0 | 
|  | }; | 
|  | typedef Map<Matrix<Scalar,Dynamic,1>, Alignment > MapVector; | 
|  | typedef Map<const Matrix<Scalar,Dynamic,1>, Alignment > ConstMapVector; | 
|  | if(rd==1)       MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b); | 
|  |  | 
|  | else if(rd==2)  MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b) | 
|  | + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b); | 
|  |  | 
|  | else            MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b) | 
|  | + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b) | 
|  | + B[2+d_end+j*ldb] * ConstMapVector(A+(d_end+2)*lda+ib, actual_b); | 
|  | } | 
|  | } | 
|  |  | 
|  | } // blocking on the rows of A and C | 
|  | } | 
|  | #undef KMADD | 
|  |  | 
|  | } // namespace internal | 
|  |  | 
|  | } // namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_SPARSELU_GEMM_KERNEL_H |