| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "common.h" | 
 |  | 
 | int EIGEN_BLAS_FUNC(axpy)(const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, RealScalar *py, const int *incy) | 
 | { | 
 |   const Scalar* x = reinterpret_cast<const Scalar*>(px); | 
 |   Scalar* y = reinterpret_cast<Scalar*>(py); | 
 |   Scalar alpha  = *reinterpret_cast<const Scalar*>(palpha); | 
 |  | 
 |   if(*n<=0) return 0; | 
 |  | 
 |   if(*incx==1 && *incy==1)    make_vector(y,*n) += alpha * make_vector(x,*n); | 
 |   else if(*incx>0 && *incy>0) make_vector(y,*n,*incy) += alpha * make_vector(x,*n,*incx); | 
 |   else if(*incx>0 && *incy<0) make_vector(y,*n,-*incy).reverse() += alpha * make_vector(x,*n,*incx); | 
 |   else if(*incx<0 && *incy>0) make_vector(y,*n,*incy) += alpha * make_vector(x,*n,-*incx).reverse(); | 
 |   else if(*incx<0 && *incy<0) make_vector(y,*n,-*incy).reverse() += alpha * make_vector(x,*n,-*incx).reverse(); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
 | { | 
 |   if(*n<=0) return 0; | 
 |  | 
 |   Scalar* x = reinterpret_cast<Scalar*>(px); | 
 |   Scalar* y = reinterpret_cast<Scalar*>(py); | 
 |  | 
 |   // be careful, *incx==0 is allowed !! | 
 |   if(*incx==1 && *incy==1) | 
 |     make_vector(y,*n) = make_vector(x,*n); | 
 |   else | 
 |   { | 
 |     if(*incx<0) x = x - (*n-1)*(*incx); | 
 |     if(*incy<0) y = y - (*n-1)*(*incy); | 
 |     for(int i=0;i<*n;++i) | 
 |     { | 
 |       *y = *x; | 
 |       x += *incx; | 
 |       y += *incy; | 
 |     } | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps) | 
 | { | 
 |   using std::sqrt; | 
 |   using std::abs; | 
 |  | 
 |   Scalar& a = *reinterpret_cast<Scalar*>(pa); | 
 |   Scalar& b = *reinterpret_cast<Scalar*>(pb); | 
 |   RealScalar* c = pc; | 
 |   Scalar* s = reinterpret_cast<Scalar*>(ps); | 
 |  | 
 |   #if !ISCOMPLEX | 
 |   Scalar r,z; | 
 |   Scalar aa = abs(a); | 
 |   Scalar ab = abs(b); | 
 |   if((aa+ab)==Scalar(0)) | 
 |   { | 
 |     *c = 1; | 
 |     *s = 0; | 
 |     r = 0; | 
 |     z = 0; | 
 |   } | 
 |   else | 
 |   { | 
 |     r = sqrt(a*a + b*b); | 
 |     Scalar amax = aa>ab ? a : b; | 
 |     r = amax>0 ? r : -r; | 
 |     *c = a/r; | 
 |     *s = b/r; | 
 |     z = 1; | 
 |     if (aa > ab) z = *s; | 
 |     if (ab > aa && *c!=RealScalar(0)) | 
 |       z = Scalar(1)/ *c; | 
 |   } | 
 |   *pa = r; | 
 |   *pb = z; | 
 |   #else | 
 |   Scalar alpha; | 
 |   RealScalar norm,scale; | 
 |   if(abs(a)==RealScalar(0)) | 
 |   { | 
 |     *c = RealScalar(0); | 
 |     *s = Scalar(1); | 
 |     a = b; | 
 |   } | 
 |   else | 
 |   { | 
 |     scale = abs(a) + abs(b); | 
 |     norm = scale*sqrt((numext::abs2(a/scale)) + (numext::abs2(b/scale))); | 
 |     alpha = a/abs(a); | 
 |     *c = abs(a)/norm; | 
 |     *s = alpha*numext::conj(b)/norm; | 
 |     a = alpha*norm; | 
 |   } | 
 |   #endif | 
 |  | 
 | //   JacobiRotation<Scalar> r; | 
 | //   r.makeGivens(a,b); | 
 | //   *c = r.c(); | 
 | //   *s = r.s(); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx) | 
 | { | 
 |   if(*n<=0) return 0; | 
 |  | 
 |   Scalar* x = reinterpret_cast<Scalar*>(px); | 
 |   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
 |  | 
 |   if(*incx==1)  make_vector(x,*n) *= alpha; | 
 |   else          make_vector(x,*n,std::abs(*incx)) *= alpha; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
 | { | 
 |   if(*n<=0) return 0; | 
 |  | 
 |   Scalar* x = reinterpret_cast<Scalar*>(px); | 
 |   Scalar* y = reinterpret_cast<Scalar*>(py); | 
 |  | 
 |   if(*incx==1 && *incy==1)    make_vector(y,*n).swap(make_vector(x,*n)); | 
 |   else if(*incx>0 && *incy>0) make_vector(y,*n,*incy).swap(make_vector(x,*n,*incx)); | 
 |   else if(*incx>0 && *incy<0) make_vector(y,*n,-*incy).reverse().swap(make_vector(x,*n,*incx)); | 
 |   else if(*incx<0 && *incy>0) make_vector(y,*n,*incy).swap(make_vector(x,*n,-*incx).reverse()); | 
 |   else if(*incx<0 && *incy<0) make_vector(y,*n,-*incy).reverse().swap(make_vector(x,*n,-*incx).reverse()); | 
 |  | 
 |   return 1; | 
 | } |