|  | #include <Eigen/Array> | 
|  |  | 
|  | int main(int argc, char *argv[]) | 
|  | { | 
|  | std::cout.precision(2); | 
|  |  | 
|  | // demo static functions | 
|  | Eigen::Matrix3f m3 = Eigen::Matrix3f::Random(); | 
|  | Eigen::Matrix4f m4 = Eigen::Matrix4f::Identity(); | 
|  |  | 
|  | std::cout << "*** Step 1 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl; | 
|  |  | 
|  | // demo non-static set... functions | 
|  | m4.setZero(); | 
|  | m3.diagonal().setOnes(); | 
|  |  | 
|  | std::cout << "*** Step 2 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl; | 
|  |  | 
|  | // demo fixed-size block() expression as lvalue and as rvalue | 
|  | m4.block<3,3>(0,1) = m3; | 
|  | m3.row(2) = m4.block<1,3>(2,0); | 
|  |  | 
|  | std::cout << "*** Step 3 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl; | 
|  |  | 
|  | // demo dynamic-size block() | 
|  | { | 
|  | int rows = 3, cols = 3; | 
|  | m4.block(0,1,3,3).setIdentity(); | 
|  | std::cout << "*** Step 4 ***\nm4:\n" << m4 << std::endl; | 
|  | } | 
|  |  | 
|  | // demo vector blocks | 
|  | m4.diagonal().block(1,2).setOnes(); | 
|  | std::cout << "*** Step 5 ***\nm4.diagonal():\n" << m4.diagonal() << std::endl; | 
|  | std::cout << "m4.diagonal().start(3)\n" << m4.diagonal().start(3) << std::endl; | 
|  |  | 
|  | // demo coeff-wise operations | 
|  | m4 = m4.cwise()*m4; | 
|  | m3 = m3.cwise().cos(); | 
|  | std::cout << "*** Step 6 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl; | 
|  |  | 
|  | // sums of coefficients | 
|  | std::cout << "*** Step 7 ***\n m4.sum(): " << m4.sum() << std::endl; | 
|  | std::cout << "m4.col(2).sum(): " << m4.col(2).sum() << std::endl; | 
|  | std::cout << "m4.colwise().sum():\n" << m4.colwise().sum() << std::endl; | 
|  | std::cout << "m4.rowwise().sum():\n" << m4.rowwise().sum() << std::endl; | 
|  |  | 
|  | // demo intelligent auto-evaluation | 
|  | m4 = m4 * m4; // auto-evaluates so no aliasing problem (performance penalty is low) | 
|  | Eigen::Matrix4f other = (m4 * m4).lazy(); // forces lazy evaluation | 
|  | m4 = m4 + m4; // here Eigen goes for lazy evaluation, as with most expressions | 
|  | m4 = -m4 + m4 + 5 * m4; // same here, Eigen chooses lazy evaluation for all that. | 
|  | m4 = m4 * (m4 + m4); // here Eigen chooses to first evaluate m4 + m4 into a temporary. | 
|  | // indeed, here it is an optimization to cache this intermediate result. | 
|  | m3 = m3 * m4.block<3,3>(1,1); // here Eigen chooses NOT to evaluate block() into a temporary | 
|  | // because accessing coefficients of that block expression is not more costly than accessing | 
|  | // coefficients of a plain matrix. | 
|  | m4 = m4 * m4.transpose(); // same here, lazy evaluation of the transpose. | 
|  | m4 = m4 * m4.transpose().eval(); // forces immediate evaluation of the transpose | 
|  |  | 
|  | std::cout << "*** Step 8 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl; | 
|  | } |