|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #define EIGEN_RUNTIME_NO_MALLOC | 
|  | #include "main.h" | 
|  | #include <limits> | 
|  | #include <Eigen/Eigenvalues> | 
|  | #include <Eigen/LU> | 
|  |  | 
|  | template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | GeneralizedEigenSolver.h | 
|  | */ | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef std::complex<Scalar> ComplexScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | MatrixType a = MatrixType::Random(rows,cols); | 
|  | MatrixType b = MatrixType::Random(rows,cols); | 
|  | MatrixType a1 = MatrixType::Random(rows,cols); | 
|  | MatrixType b1 = MatrixType::Random(rows,cols); | 
|  | MatrixType spdA =  a.adjoint() * a + a1.adjoint() * a1; | 
|  | MatrixType spdB =  b.adjoint() * b + b1.adjoint() * b1; | 
|  |  | 
|  | // lets compare to GeneralizedSelfAdjointEigenSolver | 
|  | { | 
|  | GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB); | 
|  | GeneralizedEigenSolver<MatrixType> eig(spdA, spdB); | 
|  |  | 
|  | VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0); | 
|  |  | 
|  | VectorType realEigenvalues = eig.eigenvalues().real(); | 
|  | std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size()); | 
|  | VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues()); | 
|  |  | 
|  | // check eigenvectors | 
|  | typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); | 
|  | typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); | 
|  | VERIFY_IS_APPROX(spdA*V, spdB*V*D); | 
|  | } | 
|  |  | 
|  | // non symmetric case: | 
|  | { | 
|  | GeneralizedEigenSolver<MatrixType> eig(rows); | 
|  | // TODO enable full-prealocation of required memory, this probably requires an in-place mode for HessenbergDecomposition | 
|  | //Eigen::internal::set_is_malloc_allowed(false); | 
|  | eig.compute(a,b); | 
|  | //Eigen::internal::set_is_malloc_allowed(true); | 
|  | for(Index k=0; k<cols; ++k) | 
|  | { | 
|  | Matrix<ComplexScalar,Dynamic,Dynamic> tmp = (eig.betas()(k)*a).template cast<ComplexScalar>() - eig.alphas()(k)*b; | 
|  | if(tmp.size()>1 && tmp.norm()>(std::numeric_limits<Scalar>::min)()) | 
|  | tmp /= tmp.norm(); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( std::abs(tmp.determinant()), Scalar(1) ); | 
|  | } | 
|  | // check eigenvectors | 
|  | typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); | 
|  | typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); | 
|  | VERIFY_IS_APPROX(a*V, b*V*D); | 
|  | } | 
|  |  | 
|  | // regression test for bug 1098 | 
|  | { | 
|  | GeneralizedSelfAdjointEigenSolver<MatrixType> eig1(a.adjoint() * a,b.adjoint() * b); | 
|  | eig1.compute(a.adjoint() * a,b.adjoint() * b); | 
|  | GeneralizedEigenSolver<MatrixType> eig2(a.adjoint() * a,b.adjoint() * b); | 
|  | eig2.compute(a.adjoint() * a,b.adjoint() * b); | 
|  | } | 
|  |  | 
|  | // check without eigenvectors | 
|  | { | 
|  | GeneralizedEigenSolver<MatrixType> eig1(spdA, spdB, true); | 
|  | GeneralizedEigenSolver<MatrixType> eig2(spdA, spdB, false); | 
|  | VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues()); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(eigensolver_generalized_real) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | int s = 0; | 
|  | CALL_SUBTEST_1( generalized_eigensolver_real(Matrix4f()) ); | 
|  | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | 
|  | CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(s,s)) ); | 
|  |  | 
|  | // some trivial but implementation-wise special cases | 
|  | CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(1,1)) ); | 
|  | CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(2,2)) ); | 
|  | CALL_SUBTEST_3( generalized_eigensolver_real(Matrix<double,1,1>()) ); | 
|  | CALL_SUBTEST_4( generalized_eigensolver_real(Matrix2d()) ); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } | 
|  | } |