| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | // workaround issue between gcc >= 4.7 and cuda 5.5 | 
 | #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7) | 
 |   #undef _GLIBCXX_ATOMIC_BUILTINS | 
 |   #undef _GLIBCXX_USE_INT128 | 
 | #endif | 
 |  | 
 | #define EIGEN_TEST_NO_LONGDOUBLE | 
 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | 
 |  | 
 | #include "main.h" | 
 | #include "gpu_common.h" | 
 |  | 
 | // Check that dense modules can be properly parsed by nvcc | 
 | #include <Eigen/Dense> | 
 |  | 
 | // struct Foo{ | 
 | //   EIGEN_DEVICE_FUNC | 
 | //   void operator()(int i, const float* mats, float* vecs) const { | 
 | //     using namespace Eigen; | 
 | //   //   Matrix3f M(data); | 
 | //   //   Vector3f x(data+9); | 
 | //   //   Map<Vector3f>(data+9) = M.inverse() * x; | 
 | //     Matrix3f M(mats+i/16); | 
 | //     Vector3f x(vecs+i*3); | 
 | //   //   using std::min; | 
 | //   //   using std::sqrt; | 
 | //     Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() *  x) / x.x(); | 
 | //     //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum(); | 
 | //   } | 
 | // }; | 
 |  | 
 | template<typename T> | 
 | struct coeff_wise { | 
 |   EIGEN_DEVICE_FUNC | 
 |   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
 |   { | 
 |     using namespace Eigen; | 
 |     T x1(in+i); | 
 |     T x2(in+i+1); | 
 |     T x3(in+i+2); | 
 |     Map<T> res(out+i*T::MaxSizeAtCompileTime); | 
 |      | 
 |     res.array() += (in[0] * x1 + x2).array() * x3.array(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename T> | 
 | struct complex_sqrt { | 
 |   EIGEN_DEVICE_FUNC | 
 |   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
 |   { | 
 |     using namespace Eigen; | 
 |     typedef typename T::Scalar ComplexType; | 
 |     typedef typename T::Scalar::value_type ValueType; | 
 |     const int num_special_inputs = 18; | 
 |      | 
 |     if (i == 0) { | 
 |       const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN(); | 
 |       typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs; | 
 |       SpecialInputs special_in; | 
 |       special_in.setZero(); | 
 |       int idx = 0; | 
 |       special_in[idx++] = ComplexType(0, 0); | 
 |       special_in[idx++] = ComplexType(-0, 0); | 
 |       special_in[idx++] = ComplexType(0, -0); | 
 |       special_in[idx++] = ComplexType(-0, -0); | 
 |       // GCC's fallback sqrt implementation fails for inf inputs. | 
 |       // It is called when _GLIBCXX_USE_C99_COMPLEX is false or if | 
 |       // clang includes the GCC header (which temporarily disables | 
 |       // _GLIBCXX_USE_C99_COMPLEX) | 
 |       #if !defined(_GLIBCXX_COMPLEX) || \ | 
 |         (_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX)) | 
 |       const ValueType inf = std::numeric_limits<ValueType>::infinity(); | 
 |       special_in[idx++] = ComplexType(1.0, inf); | 
 |       special_in[idx++] = ComplexType(nan, inf); | 
 |       special_in[idx++] = ComplexType(1.0, -inf); | 
 |       special_in[idx++] = ComplexType(nan, -inf); | 
 |       special_in[idx++] = ComplexType(-inf, 1.0); | 
 |       special_in[idx++] = ComplexType(inf, 1.0); | 
 |       special_in[idx++] = ComplexType(-inf, -1.0); | 
 |       special_in[idx++] = ComplexType(inf, -1.0); | 
 |       special_in[idx++] = ComplexType(-inf, nan); | 
 |       special_in[idx++] = ComplexType(inf, nan); | 
 |       #endif | 
 |       special_in[idx++] = ComplexType(1.0, nan); | 
 |       special_in[idx++] = ComplexType(nan, 1.0); | 
 |       special_in[idx++] = ComplexType(nan, -1.0); | 
 |       special_in[idx++] = ComplexType(nan, nan); | 
 |        | 
 |       Map<SpecialInputs> special_out(out); | 
 |       special_out = special_in.cwiseSqrt(); | 
 |     } | 
 |      | 
 |     T x1(in + i); | 
 |     Map<T> res(out + num_special_inputs + i*T::MaxSizeAtCompileTime); | 
 |     res = x1.cwiseSqrt(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename T> | 
 | struct replicate { | 
 |   EIGEN_DEVICE_FUNC | 
 |   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
 |   { | 
 |     using namespace Eigen; | 
 |     T x1(in+i); | 
 |     int step   = x1.size() * 4; | 
 |     int stride = 3 * step; | 
 |      | 
 |     typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType; | 
 |     MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2); | 
 |     MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3); | 
 |     MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename T> | 
 | struct redux { | 
 |   EIGEN_DEVICE_FUNC | 
 |   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
 |   { | 
 |     using namespace Eigen; | 
 |     int N = 10; | 
 |     T x1(in+i); | 
 |     out[i*N+0] = x1.minCoeff(); | 
 |     out[i*N+1] = x1.maxCoeff(); | 
 |     out[i*N+2] = x1.sum(); | 
 |     out[i*N+3] = x1.prod(); | 
 |     out[i*N+4] = x1.matrix().squaredNorm(); | 
 |     out[i*N+5] = x1.matrix().norm(); | 
 |     out[i*N+6] = x1.colwise().sum().maxCoeff(); | 
 |     out[i*N+7] = x1.rowwise().maxCoeff().sum(); | 
 |     out[i*N+8] = x1.matrix().colwise().squaredNorm().sum(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename T1, typename T2> | 
 | struct prod_test { | 
 |   EIGEN_DEVICE_FUNC | 
 |   void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const | 
 |   { | 
 |     using namespace Eigen; | 
 |     typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3; | 
 |     T1 x1(in+i); | 
 |     T2 x2(in+i+1); | 
 |     Map<T3> res(out+i*T3::MaxSizeAtCompileTime); | 
 |     res += in[i] * x1 * x2; | 
 |   } | 
 | }; | 
 |  | 
 | template<typename T1, typename T2> | 
 | struct diagonal { | 
 |   EIGEN_DEVICE_FUNC | 
 |   void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const | 
 |   { | 
 |     using namespace Eigen; | 
 |     T1 x1(in+i); | 
 |     Map<T2> res(out+i*T2::MaxSizeAtCompileTime); | 
 |     res += x1.diagonal(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename T> | 
 | struct eigenvalues_direct { | 
 |   EIGEN_DEVICE_FUNC | 
 |   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
 |   { | 
 |     using namespace Eigen; | 
 |     typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; | 
 |     T M(in+i); | 
 |     Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); | 
 |     T A = M*M.adjoint(); | 
 |     SelfAdjointEigenSolver<T> eig; | 
 |     eig.computeDirect(A); | 
 |     res = eig.eigenvalues(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename T> | 
 | struct eigenvalues { | 
 |   EIGEN_DEVICE_FUNC | 
 |   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
 |   { | 
 |     using namespace Eigen; | 
 |     typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; | 
 |     T M(in+i); | 
 |     Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); | 
 |     T A = M*M.adjoint(); | 
 |     SelfAdjointEigenSolver<T> eig; | 
 |     eig.compute(A); | 
 |     res = eig.eigenvalues(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename T> | 
 | struct matrix_inverse { | 
 |   EIGEN_DEVICE_FUNC | 
 |   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
 |   { | 
 |     using namespace Eigen; | 
 |     T M(in+i); | 
 |     Map<T> res(out+i*T::MaxSizeAtCompileTime); | 
 |     res = M.inverse(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Type1, typename Type2> | 
 | bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only | 
 | { | 
 |   if (a.rows() != b.rows()) { | 
 |     return false; | 
 |   } | 
 |   if (a.cols() != b.cols()) { | 
 |     return false; | 
 |   } | 
 |   for (Index r = 0; r < a.rows(); ++r) { | 
 |     for (Index c = 0; c < a.cols(); ++c) { | 
 |       if (a(r, c) != b(r, c) | 
 |           && !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c)))  | 
 |           && !test_isApprox(a(r, c), b(r, c))) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template<typename Kernel, typename Input, typename Output> | 
 | void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out) | 
 | { | 
 |   Output out_ref, out_gpu; | 
 |   #if !defined(EIGEN_GPU_COMPILE_PHASE) | 
 |   out_ref = out_gpu = out; | 
 |   #else | 
 |   EIGEN_UNUSED_VARIABLE(in); | 
 |   EIGEN_UNUSED_VARIABLE(out); | 
 |   #endif | 
 |   run_on_cpu (ker, n, in,  out_ref); | 
 |   run_on_gpu(ker, n, in, out_gpu); | 
 |   #if !defined(EIGEN_GPU_COMPILE_PHASE) | 
 |   verifyIsApproxWithInfsNans(out_ref, out_gpu); | 
 |   #endif | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(gpu_basic) | 
 | { | 
 |   ei_test_init_gpu(); | 
 |    | 
 |   int nthreads = 100; | 
 |   Eigen::VectorXf in, out; | 
 |   Eigen::VectorXcf cfin, cfout; | 
 |    | 
 |   #if !defined(EIGEN_GPU_COMPILE_PHASE) | 
 |   int data_size = nthreads * 512; | 
 |   in.setRandom(data_size); | 
 |   out.setConstant(data_size, -1); | 
 |   cfin.setRandom(data_size); | 
 |   cfout.setConstant(data_size, -1); | 
 |   #endif | 
 |    | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) ); | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) ); | 
 |  | 
 | #if !defined(EIGEN_USE_HIP) | 
 |   // FIXME | 
 |   // These subtests result in a compile failure on the HIP platform | 
 |   // | 
 |   //  eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error: | 
 |   //           base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type' | 
 |   //           (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) ); | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) ); | 
 | #endif | 
 |    | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) ); | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) ); | 
 |    | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) ); | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) ); | 
 |    | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) ); | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) ); | 
 |  | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) ); | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) ); | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) ); | 
 |    | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) ); | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) ); | 
 |  | 
 |   CALL_SUBTEST( test_with_infs_nans(complex_sqrt<Vector3cf>(), nthreads, cfin, cfout) ); | 
 |  | 
 | #if defined(__NVCC__) | 
 |   // FIXME | 
 |   // These subtests compiles only with nvcc and fail with HIPCC and clang-cuda | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) ); | 
 |   typedef Matrix<float,6,6> Matrix6f; | 
 |   CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) ); | 
 | #endif | 
 | } |