| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_AUTODIFF_JACOBIAN_H | 
 | #define EIGEN_AUTODIFF_JACOBIAN_H | 
 |  | 
 | namespace Eigen | 
 | { | 
 |  | 
 | template<typename Functor> class AutoDiffJacobian : public Functor | 
 | { | 
 | public: | 
 |   AutoDiffJacobian() : Functor() {} | 
 |   AutoDiffJacobian(const Functor& f) : Functor(f) {} | 
 |  | 
 |   // forward constructors | 
 | #if EIGEN_HAS_VARIADIC_TEMPLATES | 
 |   template<typename... T> | 
 |   AutoDiffJacobian(const T& ...Values) : Functor(Values...) {} | 
 | #else | 
 |   template<typename T0> | 
 |   AutoDiffJacobian(const T0& a0) : Functor(a0) {} | 
 |   template<typename T0, typename T1> | 
 |   AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {} | 
 |   template<typename T0, typename T1, typename T2> | 
 |   AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {} | 
 | #endif | 
 |  | 
 |   typedef typename Functor::InputType InputType; | 
 |   typedef typename Functor::ValueType ValueType; | 
 |   typedef typename ValueType::Scalar Scalar; | 
 |  | 
 |   enum { | 
 |     InputsAtCompileTime = InputType::RowsAtCompileTime, | 
 |     ValuesAtCompileTime = ValueType::RowsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; | 
 |   typedef typename JacobianType::Index Index; | 
 |  | 
 |   typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType; | 
 |   typedef AutoDiffScalar<DerivativeType> ActiveScalar; | 
 |  | 
 |   typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput; | 
 |   typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue; | 
 |  | 
 | #if EIGEN_HAS_VARIADIC_TEMPLATES | 
 |   // Some compilers don't accept variadic parameters after a default parameter, | 
 |   // i.e., we can't just write _jac=0 but we need to overload operator(): | 
 |   EIGEN_STRONG_INLINE | 
 |   void operator() (const InputType& x, ValueType* v) const | 
 |   { | 
 |       this->operator()(x, v, 0); | 
 |   } | 
 |   template<typename... ParamsType> | 
 |   void operator() (const InputType& x, ValueType* v, JacobianType* _jac, | 
 |                    const ParamsType&... Params) const | 
 | #else | 
 |   void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const | 
 | #endif | 
 |   { | 
 |     eigen_assert(v!=0); | 
 |  | 
 |     if (!_jac) | 
 |     { | 
 | #if EIGEN_HAS_VARIADIC_TEMPLATES | 
 |       Functor::operator()(x, v, Params...); | 
 | #else | 
 |       Functor::operator()(x, v); | 
 | #endif | 
 |       return; | 
 |     } | 
 |  | 
 |     JacobianType& jac = *_jac; | 
 |  | 
 |     ActiveInput ax = x.template cast<ActiveScalar>(); | 
 |     ActiveValue av(jac.rows()); | 
 |  | 
 |     if(InputsAtCompileTime==Dynamic) | 
 |       for (Index j=0; j<jac.rows(); j++) | 
 |         av[j].derivatives().resize(x.rows()); | 
 |  | 
 |     for (Index i=0; i<jac.cols(); i++) | 
 |       ax[i].derivatives() = DerivativeType::Unit(x.rows(),i); | 
 |  | 
 | #if EIGEN_HAS_VARIADIC_TEMPLATES | 
 |     Functor::operator()(ax, &av, Params...); | 
 | #else | 
 |     Functor::operator()(ax, &av); | 
 | #endif | 
 |  | 
 |     for (Index i=0; i<jac.rows(); i++) | 
 |     { | 
 |       (*v)[i] = av[i].value(); | 
 |       jac.row(i) = av[i].derivatives(); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | #endif // EIGEN_AUTODIFF_JACOBIAN_H |