| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_AUTODIFF_SCALAR_H | 
 | #define EIGEN_AUTODIFF_SCALAR_H | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename A, typename B> | 
 | struct make_coherent_impl { | 
 |   static void run(A&, B&) {} | 
 | }; | 
 |  | 
 | // resize a to match b is a.size()==0, and conversely. | 
 | template<typename A, typename B> | 
 | void make_coherent(const A& a, const B&b) | 
 | { | 
 |   make_coherent_impl<A,B>::run(a.const_cast_derived(), b.const_cast_derived()); | 
 | } | 
 |  | 
 | template<typename _DerType, bool Enable> struct auto_diff_special_op; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | template<typename _DerType> class AutoDiffScalar; | 
 |  | 
 | template<typename NewDerType> | 
 | inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType &der) { | 
 |   return AutoDiffScalar<NewDerType>(value,der); | 
 | } | 
 |  | 
 | /** \class AutoDiffScalar | 
 |   * \brief A scalar type replacement with automatic differentation capability | 
 |   * | 
 |   * \param _DerType the vector type used to store/represent the derivatives. The base scalar type | 
 |   *                 as well as the number of derivatives to compute are determined from this type. | 
 |   *                 Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf | 
 |   *                 if the number of derivatives is not known at compile time, and/or, the number | 
 |   *                 of derivatives is large. | 
 |   *                 Note that _DerType can also be a reference (e.g., \c VectorXf&) to wrap a | 
 |   *                 existing vector into an AutoDiffScalar. | 
 |   *                 Finally, _DerType can also be any Eigen compatible expression. | 
 |   * | 
 |   * This class represents a scalar value while tracking its respective derivatives using Eigen's expression | 
 |   * template mechanism. | 
 |   * | 
 |   * It supports the following list of global math function: | 
 |   *  - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos, | 
 |   *  - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos, | 
 |   *  - internal::conj, internal::real, internal::imag, numext::abs2. | 
 |   * | 
 |   * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However, | 
 |   * in that case, the expression template mechanism only occurs at the top Matrix level, | 
 |   * while derivatives are computed right away. | 
 |   * | 
 |   */ | 
 |  | 
 | template<typename _DerType> | 
 | class AutoDiffScalar | 
 |   : public internal::auto_diff_special_op | 
 |             <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar, | 
 |                                           typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value> | 
 | { | 
 |   public: | 
 |     typedef internal::auto_diff_special_op | 
 |             <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar, | 
 |                        typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value> Base; | 
 |     typedef typename internal::remove_all<_DerType>::type DerType; | 
 |     typedef typename internal::traits<DerType>::Scalar Scalar; | 
 |     typedef typename NumTraits<Scalar>::Real Real; | 
 |  | 
 |     using Base::operator+; | 
 |     using Base::operator*; | 
 |  | 
 |     /** Default constructor without any initialization. */ | 
 |     AutoDiffScalar() {} | 
 |  | 
 |     /** Constructs an active scalar from its \a value, | 
 |         and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */ | 
 |     AutoDiffScalar(const Scalar& value, int nbDer, int derNumber) | 
 |       : m_value(value), m_derivatives(DerType::Zero(nbDer)) | 
 |     { | 
 |       m_derivatives.coeffRef(derNumber) = Scalar(1); | 
 |     } | 
 |  | 
 |     /** Conversion from a scalar constant to an active scalar. | 
 |       * The derivatives are set to zero. */ | 
 |     /*explicit*/ AutoDiffScalar(const Real& value) | 
 |       : m_value(value) | 
 |     { | 
 |       if(m_derivatives.size()>0) | 
 |         m_derivatives.setZero(); | 
 |     } | 
 |  | 
 |     /** Constructs an active scalar from its \a value and derivatives \a der */ | 
 |     AutoDiffScalar(const Scalar& value, const DerType& der) | 
 |       : m_value(value), m_derivatives(der) | 
 |     {} | 
 |  | 
 |     template<typename OtherDerType> | 
 |     AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |     , typename internal::enable_if< | 
 |             internal::is_same<Scalar, typename internal::traits<typename internal::remove_all<OtherDerType>::type>::Scalar>::value | 
 |         &&  internal::is_convertible<OtherDerType,DerType>::value , void*>::type = 0 | 
 | #endif | 
 |     ) | 
 |       : m_value(other.value()), m_derivatives(other.derivatives()) | 
 |     {} | 
 |  | 
 |     friend  std::ostream & operator << (std::ostream & s, const AutoDiffScalar& a) | 
 |     { | 
 |       return s << a.value(); | 
 |     } | 
 |  | 
 |     AutoDiffScalar(const AutoDiffScalar& other) | 
 |       : m_value(other.value()), m_derivatives(other.derivatives()) | 
 |     {} | 
 |  | 
 |     template<typename OtherDerType> | 
 |     inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other) | 
 |     { | 
 |       m_value = other.value(); | 
 |       m_derivatives = other.derivatives(); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     inline AutoDiffScalar& operator=(const AutoDiffScalar& other) | 
 |     { | 
 |       m_value = other.value(); | 
 |       m_derivatives = other.derivatives(); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     inline AutoDiffScalar& operator=(const Scalar& other) | 
 |     { | 
 |       m_value = other; | 
 |       if(m_derivatives.size()>0) | 
 |         m_derivatives.setZero(); | 
 |       return *this; | 
 |     } | 
 |  | 
 | //     inline operator const Scalar& () const { return m_value; } | 
 | //     inline operator Scalar& () { return m_value; } | 
 |  | 
 |     inline const Scalar& value() const { return m_value; } | 
 |     inline Scalar& value() { return m_value; } | 
 |  | 
 |     inline const DerType& derivatives() const { return m_derivatives; } | 
 |     inline DerType& derivatives() { return m_derivatives; } | 
 |  | 
 |     inline bool operator< (const Scalar& other) const  { return m_value <  other; } | 
 |     inline bool operator<=(const Scalar& other) const  { return m_value <= other; } | 
 |     inline bool operator> (const Scalar& other) const  { return m_value >  other; } | 
 |     inline bool operator>=(const Scalar& other) const  { return m_value >= other; } | 
 |     inline bool operator==(const Scalar& other) const  { return m_value == other; } | 
 |     inline bool operator!=(const Scalar& other) const  { return m_value != other; } | 
 |  | 
 |     friend inline bool operator< (const Scalar& a, const AutoDiffScalar& b) { return a <  b.value(); } | 
 |     friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); } | 
 |     friend inline bool operator> (const Scalar& a, const AutoDiffScalar& b) { return a >  b.value(); } | 
 |     friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); } | 
 |     friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); } | 
 |     friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); } | 
 |  | 
 |     template<typename OtherDerType> inline bool operator< (const AutoDiffScalar<OtherDerType>& b) const  { return m_value <  b.value(); } | 
 |     template<typename OtherDerType> inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value <= b.value(); } | 
 |     template<typename OtherDerType> inline bool operator> (const AutoDiffScalar<OtherDerType>& b) const  { return m_value >  b.value(); } | 
 |     template<typename OtherDerType> inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value >= b.value(); } | 
 |     template<typename OtherDerType> inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const  { return m_value == b.value(); } | 
 |     template<typename OtherDerType> inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value != b.value(); } | 
 |  | 
 |     inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const | 
 |     { | 
 |       return AutoDiffScalar<DerType&>(m_value + other, m_derivatives); | 
 |     } | 
 |  | 
 |     friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b) | 
 |     { | 
 |       return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
 |     } | 
 |  | 
 | //     inline const AutoDiffScalar<DerType&> operator+(const Real& other) const | 
 | //     { | 
 | //       return AutoDiffScalar<DerType&>(m_value + other, m_derivatives); | 
 | //     } | 
 |  | 
 | //     friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b) | 
 | //     { | 
 | //       return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
 | //     } | 
 |  | 
 |     inline AutoDiffScalar& operator+=(const Scalar& other) | 
 |     { | 
 |       value() += other; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     template<typename OtherDerType> | 
 |     inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> > | 
 |     operator+(const AutoDiffScalar<OtherDerType>& other) const | 
 |     { | 
 |       internal::make_coherent(m_derivatives, other.derivatives()); | 
 |       return AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >( | 
 |         m_value + other.value(), | 
 |         m_derivatives + other.derivatives()); | 
 |     } | 
 |  | 
 |     template<typename OtherDerType> | 
 |     inline AutoDiffScalar& | 
 |     operator+=(const AutoDiffScalar<OtherDerType>& other) | 
 |     { | 
 |       (*this) = (*this) + other; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     inline const AutoDiffScalar<DerType&> operator-(const Scalar& b) const | 
 |     { | 
 |       return AutoDiffScalar<DerType&>(m_value - b, m_derivatives); | 
 |     } | 
 |  | 
 |     friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> > | 
 |     operator-(const Scalar& a, const AutoDiffScalar& b) | 
 |     { | 
 |       return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> > | 
 |             (a - b.value(), -b.derivatives()); | 
 |     } | 
 |  | 
 |     inline AutoDiffScalar& operator-=(const Scalar& other) | 
 |     { | 
 |       value() -= other; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     template<typename OtherDerType> | 
 |     inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> > | 
 |     operator-(const AutoDiffScalar<OtherDerType>& other) const | 
 |     { | 
 |       internal::make_coherent(m_derivatives, other.derivatives()); | 
 |       return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >( | 
 |         m_value - other.value(), | 
 |         m_derivatives - other.derivatives()); | 
 |     } | 
 |  | 
 |     template<typename OtherDerType> | 
 |     inline AutoDiffScalar& | 
 |     operator-=(const AutoDiffScalar<OtherDerType>& other) | 
 |     { | 
 |       *this = *this - other; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> > | 
 |     operator-() const | 
 |     { | 
 |       return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >( | 
 |         -m_value, | 
 |         -m_derivatives); | 
 |     } | 
 |  | 
 |     inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > | 
 |     operator*(const Scalar& other) const | 
 |     { | 
 |       return MakeAutoDiffScalar(m_value * other, m_derivatives * other); | 
 |     } | 
 |  | 
 |     friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > | 
 |     operator*(const Scalar& other, const AutoDiffScalar& a) | 
 |     { | 
 |       return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other); | 
 |     } | 
 |  | 
 | //     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
 | //     operator*(const Real& other) const | 
 | //     { | 
 | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
 | //         m_value * other, | 
 | //         (m_derivatives * other)); | 
 | //     } | 
 | // | 
 | //     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
 | //     operator*(const Real& other, const AutoDiffScalar& a) | 
 | //     { | 
 | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
 | //         a.value() * other, | 
 | //         a.derivatives() * other); | 
 | //     } | 
 |  | 
 |     inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > | 
 |     operator/(const Scalar& other) const | 
 |     { | 
 |       return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1)/other))); | 
 |     } | 
 |  | 
 |     friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > | 
 |     operator/(const Scalar& other, const AutoDiffScalar& a) | 
 |     { | 
 |       return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value()*a.value()))); | 
 |     } | 
 |  | 
 | //     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
 | //     operator/(const Real& other) const | 
 | //     { | 
 | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
 | //         m_value / other, | 
 | //         (m_derivatives * (Real(1)/other))); | 
 | //     } | 
 | // | 
 | //     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
 | //     operator/(const Real& other, const AutoDiffScalar& a) | 
 | //     { | 
 | //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
 | //         other / a.value(), | 
 | //         a.derivatives() * (-Real(1)/other)); | 
 | //     } | 
 |  | 
 |     template<typename OtherDerType> | 
 |     inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE( | 
 |         CwiseBinaryOp<internal::scalar_difference_op<Scalar> EIGEN_COMMA | 
 |           const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) EIGEN_COMMA | 
 |           const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) >,Scalar,product) > | 
 |     operator/(const AutoDiffScalar<OtherDerType>& other) const | 
 |     { | 
 |       internal::make_coherent(m_derivatives, other.derivatives()); | 
 |       return MakeAutoDiffScalar( | 
 |         m_value / other.value(), | 
 |           ((m_derivatives * other.value()) - (other.derivatives() * m_value)) | 
 |         * (Scalar(1)/(other.value()*other.value()))); | 
 |     } | 
 |  | 
 |     template<typename OtherDerType> | 
 |     inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>, | 
 |         const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product), | 
 |         const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) > > | 
 |     operator*(const AutoDiffScalar<OtherDerType>& other) const | 
 |     { | 
 |       internal::make_coherent(m_derivatives, other.derivatives()); | 
 |       return MakeAutoDiffScalar( | 
 |         m_value * other.value(), | 
 |         (m_derivatives * other.value()) + (other.derivatives() * m_value)); | 
 |     } | 
 |  | 
 |     inline AutoDiffScalar& operator*=(const Scalar& other) | 
 |     { | 
 |       *this = *this * other; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     template<typename OtherDerType> | 
 |     inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other) | 
 |     { | 
 |       *this = *this * other; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     inline AutoDiffScalar& operator/=(const Scalar& other) | 
 |     { | 
 |       *this = *this / other; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     template<typename OtherDerType> | 
 |     inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other) | 
 |     { | 
 |       *this = *this / other; | 
 |       return *this; | 
 |     } | 
 |  | 
 |   protected: | 
 |     Scalar m_value; | 
 |     DerType m_derivatives; | 
 |  | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename _DerType> | 
 | struct auto_diff_special_op<_DerType, true> | 
 | //   : auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real, | 
 | //                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value> | 
 | { | 
 |   typedef typename remove_all<_DerType>::type DerType; | 
 |   typedef typename traits<DerType>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real Real; | 
 |  | 
 | //   typedef auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real, | 
 | //                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base; | 
 |  | 
 | //   using Base::operator+; | 
 | //   using Base::operator+=; | 
 | //   using Base::operator-; | 
 | //   using Base::operator-=; | 
 | //   using Base::operator*; | 
 | //   using Base::operator*=; | 
 |  | 
 |   const AutoDiffScalar<_DerType>& derived() const { return *static_cast<const AutoDiffScalar<_DerType>*>(this); } | 
 |   AutoDiffScalar<_DerType>& derived() { return *static_cast<AutoDiffScalar<_DerType>*>(this); } | 
 |  | 
 |  | 
 |   inline const AutoDiffScalar<DerType&> operator+(const Real& other) const | 
 |   { | 
 |     return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives()); | 
 |   } | 
 |  | 
 |   friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<_DerType>& b) | 
 |   { | 
 |     return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar<_DerType>& operator+=(const Real& other) | 
 |   { | 
 |     derived().value() += other; | 
 |     return derived(); | 
 |   } | 
 |  | 
 |  | 
 |   inline const AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type > | 
 |   operator*(const Real& other) const | 
 |   { | 
 |     return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >( | 
 |       derived().value() * other, | 
 |       derived().derivatives() * other); | 
 |   } | 
 |  | 
 |   friend inline const AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type > | 
 |   operator*(const Real& other, const AutoDiffScalar<_DerType>& a) | 
 |   { | 
 |     return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >( | 
 |       a.value() * other, | 
 |       a.derivatives() * other); | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar<_DerType>& operator*=(const Scalar& other) | 
 |   { | 
 |     *this = *this * other; | 
 |     return derived(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename _DerType> | 
 | struct auto_diff_special_op<_DerType, false> | 
 | { | 
 |   void operator*() const; | 
 |   void operator-() const; | 
 |   void operator+() const; | 
 | }; | 
 |  | 
 | template<typename BinOp, typename A, typename B, typename RefType> | 
 | void make_coherent_expression(CwiseBinaryOp<BinOp,A,B> xpr, const RefType &ref) | 
 | { | 
 |   make_coherent(xpr.const_cast_derived().lhs(), ref); | 
 |   make_coherent(xpr.const_cast_derived().rhs(), ref); | 
 | } | 
 |  | 
 | template<typename UnaryOp, typename A, typename RefType> | 
 | void make_coherent_expression(const CwiseUnaryOp<UnaryOp,A> &xpr, const RefType &ref) | 
 | { | 
 |   make_coherent(xpr.nestedExpression().const_cast_derived(), ref); | 
 | } | 
 |  | 
 | // needed for compilation only | 
 | template<typename UnaryOp, typename A, typename RefType> | 
 | void make_coherent_expression(const CwiseNullaryOp<UnaryOp,A> &, const RefType &) | 
 | {} | 
 |  | 
 | template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B> | 
 | struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> { | 
 |   typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A; | 
 |   static void run(A& a, B& b) { | 
 |     if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0)) | 
 |     { | 
 |       a.resize(b.size()); | 
 |       a.setZero(); | 
 |     } | 
 |     else if (B::SizeAtCompileTime==Dynamic && a.size()!=0 && b.size()==0) | 
 |     { | 
 |       make_coherent_expression(b,a); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template<typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols> | 
 | struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > { | 
 |   typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B; | 
 |   static void run(A& a, B& b) { | 
 |     if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0)) | 
 |     { | 
 |       b.resize(a.size()); | 
 |       b.setZero(); | 
 |     } | 
 |     else if (A::SizeAtCompileTime==Dynamic && b.size()!=0 && a.size()==0) | 
 |     { | 
 |       make_coherent_expression(a,b); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, | 
 |          typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols> | 
 | struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, | 
 |                           Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > { | 
 |   typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A; | 
 |   typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B; | 
 |   static void run(A& a, B& b) { | 
 |     if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0)) | 
 |     { | 
 |       a.resize(b.size()); | 
 |       a.setZero(); | 
 |     } | 
 |     else if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0)) | 
 |     { | 
 |       b.resize(a.size()); | 
 |       b.setZero(); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | template<typename DerType, typename BinOp> | 
 | struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,typename DerType::Scalar,BinOp> | 
 | { | 
 |   typedef AutoDiffScalar<DerType> ReturnType; | 
 | }; | 
 |  | 
 | template<typename DerType, typename BinOp> | 
 | struct ScalarBinaryOpTraits<typename DerType::Scalar,AutoDiffScalar<DerType>, BinOp> | 
 | { | 
 |   typedef AutoDiffScalar<DerType> ReturnType; | 
 | }; | 
 |  | 
 |  | 
 | // The following is an attempt to let Eigen's known about expression template, but that's more tricky! | 
 |  | 
 | // template<typename DerType, typename BinOp> | 
 | // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp> | 
 | // { | 
 | //   enum { Defined = 1 }; | 
 | //   typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType; | 
 | // }; | 
 | // | 
 | // template<typename DerType1,typename DerType2, typename BinOp> | 
 | // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp> | 
 | // { | 
 | //   enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value }; | 
 | //   typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType; | 
 | // }; | 
 |  | 
 | #define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \ | 
 |   template<typename DerType> \ | 
 |   inline const Eigen::AutoDiffScalar< \ | 
 |   EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename Eigen::internal::remove_all<DerType>::type, typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar, product) > \ | 
 |   FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \ | 
 |     using namespace Eigen; \ | 
 |     typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \ | 
 |     EIGEN_UNUSED_VARIABLE(sizeof(Scalar)); \ | 
 |     CODE; \ | 
 |   } | 
 |  | 
 | template<typename DerType> | 
 | struct CleanedUpDerType { | 
 |   typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> type; | 
 | }; | 
 |  | 
 | template<typename DerType> | 
 | inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x)  { return x; } | 
 | template<typename DerType> | 
 | inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x)  { return x; } | 
 | template<typename DerType> | 
 | inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&)    { return 0.; } | 
 | template<typename DerType, typename T> | 
 | inline typename CleanedUpDerType<DerType>::type (min)(const AutoDiffScalar<DerType>& x, const T& y) { | 
 |   typedef typename CleanedUpDerType<DerType>::type ADS; | 
 |   return (x <= y ? ADS(x) : ADS(y)); | 
 | } | 
 | template<typename DerType, typename T> | 
 | inline typename CleanedUpDerType<DerType>::type (max)(const AutoDiffScalar<DerType>& x, const T& y) { | 
 |   typedef typename CleanedUpDerType<DerType>::type ADS; | 
 |   return (x >= y ? ADS(x) : ADS(y)); | 
 | } | 
 | template<typename DerType, typename T> | 
 | inline typename CleanedUpDerType<DerType>::type (min)(const T& x, const AutoDiffScalar<DerType>& y) { | 
 |   typedef typename CleanedUpDerType<DerType>::type ADS; | 
 |   return (x < y ? ADS(x) : ADS(y)); | 
 | } | 
 | template<typename DerType, typename T> | 
 | inline typename CleanedUpDerType<DerType>::type (max)(const T& x, const AutoDiffScalar<DerType>& y) { | 
 |   typedef typename CleanedUpDerType<DerType>::type ADS; | 
 |   return (x > y ? ADS(x) : ADS(y)); | 
 | } | 
 | template<typename DerType> | 
 | inline typename CleanedUpDerType<DerType>::type (min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) { | 
 |   return (x.value() < y.value() ? x : y); | 
 | } | 
 | template<typename DerType> | 
 | inline typename CleanedUpDerType<DerType>::type (max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) { | 
 |   return (x.value() >= y.value() ? x : y); | 
 | } | 
 |  | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs, | 
 |   using std::abs; | 
 |   return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2, | 
 |   using numext::abs2; | 
 |   return Eigen::MakeAutoDiffScalar(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt, | 
 |   using std::sqrt; | 
 |   Scalar sqrtx = sqrt(x.value()); | 
 |   return Eigen::MakeAutoDiffScalar(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos, | 
 |   using std::cos; | 
 |   using std::sin; | 
 |   return Eigen::MakeAutoDiffScalar(cos(x.value()), x.derivatives() * (-sin(x.value())));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin, | 
 |   using std::sin; | 
 |   using std::cos; | 
 |   return Eigen::MakeAutoDiffScalar(sin(x.value()),x.derivatives() * cos(x.value()));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp, | 
 |   using std::exp; | 
 |   Scalar expx = exp(x.value()); | 
 |   return Eigen::MakeAutoDiffScalar(expx,x.derivatives() * expx);) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log, | 
 |   using std::log; | 
 |   return Eigen::MakeAutoDiffScalar(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));) | 
 |  | 
 | template<typename DerType> | 
 | inline const Eigen::AutoDiffScalar< | 
 | EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<DerType>::type,typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar,product) > | 
 | pow(const Eigen::AutoDiffScalar<DerType> &x, const typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar &y) | 
 | { | 
 |   using namespace Eigen; | 
 |   using std::pow; | 
 |   return Eigen::MakeAutoDiffScalar(pow(x.value(),y), x.derivatives() * (y * pow(x.value(),y-1))); | 
 | } | 
 |  | 
 |  | 
 | template<typename DerTypeA,typename DerTypeB> | 
 | inline const AutoDiffScalar<Matrix<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar,Dynamic,1> > | 
 | atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b) | 
 | { | 
 |   using std::atan2; | 
 |   typedef typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar Scalar; | 
 |   typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS; | 
 |   PlainADS ret; | 
 |   ret.value() = atan2(a.value(), b.value()); | 
 |    | 
 |   Scalar squared_hypot = a.value() * a.value() + b.value() * b.value(); | 
 |    | 
 |   // if (squared_hypot==0) the derivation is undefined and the following results in a NaN: | 
 |   ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot; | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan, | 
 |   using std::tan; | 
 |   using std::cos; | 
 |   return Eigen::MakeAutoDiffScalar(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin, | 
 |   using std::sqrt; | 
 |   using std::asin; | 
 |   return Eigen::MakeAutoDiffScalar(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));) | 
 |    | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos, | 
 |   using std::sqrt; | 
 |   using std::acos; | 
 |   return Eigen::MakeAutoDiffScalar(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh, | 
 |   using std::cosh; | 
 |   using std::tanh; | 
 |   return Eigen::MakeAutoDiffScalar(tanh(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cosh(x.value()))));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh, | 
 |   using std::sinh; | 
 |   using std::cosh; | 
 |   return Eigen::MakeAutoDiffScalar(sinh(x.value()),x.derivatives() * cosh(x.value()));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh, | 
 |   using std::sinh; | 
 |   using std::cosh; | 
 |   return Eigen::MakeAutoDiffScalar(cosh(x.value()),x.derivatives() * sinh(x.value()));) | 
 |  | 
 | #undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | 
 |  | 
 | template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> > | 
 |   : NumTraits< typename NumTraits<typename internal::remove_all<DerType>::type::Scalar>::Real > | 
 | { | 
 |   typedef typename internal::remove_all<DerType>::type DerTypeCleaned; | 
 |   typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real,DerTypeCleaned::RowsAtCompileTime,DerTypeCleaned::ColsAtCompileTime, | 
 |                                 0, DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime> > Real; | 
 |   typedef AutoDiffScalar<DerType> NonInteger; | 
 |   typedef AutoDiffScalar<DerType> Nested; | 
 |   typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal; | 
 |   enum{ | 
 |     RequireInitialization = 1 | 
 |   }; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | namespace std { | 
 |  | 
 | template <typename T> | 
 | class numeric_limits<Eigen::AutoDiffScalar<T> > | 
 |   : public numeric_limits<typename T::Scalar> {}; | 
 |  | 
 | template <typename T> | 
 | class numeric_limits<Eigen::AutoDiffScalar<T&> > | 
 |   : public numeric_limits<typename T::Scalar> {}; | 
 |  | 
 | }  // namespace std | 
 |  | 
 | #endif // EIGEN_AUTODIFF_SCALAR_H |