| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> | 
 |  | 
 | #include <stdio.h> | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/NumericalDiff> | 
 |      | 
 | // Generic functor | 
 | template<typename _Scalar, int NX=Dynamic, int NY=Dynamic> | 
 | struct Functor | 
 | { | 
 |   typedef _Scalar Scalar; | 
 |   enum { | 
 |     InputsAtCompileTime = NX, | 
 |     ValuesAtCompileTime = NY | 
 |   }; | 
 |   typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; | 
 |   typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; | 
 |   typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; | 
 |    | 
 |   int m_inputs, m_values; | 
 |    | 
 |   Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} | 
 |   Functor(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {} | 
 |    | 
 |   int inputs() const { return m_inputs; } | 
 |   int values() const { return m_values; } | 
 |  | 
 | }; | 
 |  | 
 | struct my_functor : Functor<double> | 
 | { | 
 |     my_functor(void): Functor<double>(3,15) {} | 
 |     int operator()(const VectorXd &x, VectorXd &fvec) const | 
 |     { | 
 |         double tmp1, tmp2, tmp3; | 
 |         double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, | 
 |             3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; | 
 |  | 
 |         for (int i = 0; i < values(); i++) | 
 |         { | 
 |             tmp1 = i+1; | 
 |             tmp2 = 16 - i - 1; | 
 |             tmp3 = (i>=8)? tmp2 : tmp1; | 
 |             fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3)); | 
 |         } | 
 |         return 0; | 
 |     } | 
 |  | 
 |     int actual_df(const VectorXd &x, MatrixXd &fjac) const | 
 |     { | 
 |         double tmp1, tmp2, tmp3, tmp4; | 
 |         for (int i = 0; i < values(); i++) | 
 |         { | 
 |             tmp1 = i+1; | 
 |             tmp2 = 16 - i - 1; | 
 |             tmp3 = (i>=8)? tmp2 : tmp1; | 
 |             tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4; | 
 |             fjac(i,0) = -1; | 
 |             fjac(i,1) = tmp1*tmp2/tmp4; | 
 |             fjac(i,2) = tmp1*tmp3/tmp4; | 
 |         } | 
 |         return 0; | 
 |     } | 
 | }; | 
 |  | 
 | void test_forward() | 
 | { | 
 |     VectorXd x(3); | 
 |     MatrixXd jac(15,3); | 
 |     MatrixXd actual_jac(15,3); | 
 |     my_functor functor; | 
 |  | 
 |     x << 0.082, 1.13, 2.35; | 
 |  | 
 |     // real one  | 
 |     functor.actual_df(x, actual_jac); | 
 | //    std::cout << actual_jac << std::endl << std::endl; | 
 |  | 
 |     // using NumericalDiff | 
 |     NumericalDiff<my_functor> numDiff(functor); | 
 |     numDiff.df(x, jac); | 
 | //    std::cout << jac << std::endl; | 
 |  | 
 |     VERIFY_IS_APPROX(jac, actual_jac); | 
 | } | 
 |  | 
 | void test_central() | 
 | { | 
 |     VectorXd x(3); | 
 |     MatrixXd jac(15,3); | 
 |     MatrixXd actual_jac(15,3); | 
 |     my_functor functor; | 
 |  | 
 |     x << 0.082, 1.13, 2.35; | 
 |  | 
 |     // real one  | 
 |     functor.actual_df(x, actual_jac); | 
 |  | 
 |     // using NumericalDiff | 
 |     NumericalDiff<my_functor,Central> numDiff(functor); | 
 |     numDiff.df(x, jac); | 
 |  | 
 |     VERIFY_IS_APPROX(jac, actual_jac); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(NumericalDiff) | 
 | { | 
 |     CALL_SUBTEST(test_forward()); | 
 |     CALL_SUBTEST(test_central()); | 
 | } |