|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include <numeric> | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #include <Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::Tensor; | 
|  | using Eigen::RowMajor; | 
|  |  | 
|  | static void test_1d() | 
|  | { | 
|  | Tensor<float, 1> vec1(6); | 
|  | Tensor<float, 1, RowMajor> vec2(6); | 
|  |  | 
|  | vec1(0) = 4.0;  vec2(0) = 0.0; | 
|  | vec1(1) = 8.0;  vec2(1) = 1.0; | 
|  | vec1(2) = 15.0; vec2(2) = 2.0; | 
|  | vec1(3) = 16.0; vec2(3) = 3.0; | 
|  | vec1(4) = 23.0; vec2(4) = 4.0; | 
|  | vec1(5) = 42.0; vec2(5) = 5.0; | 
|  |  | 
|  | float data3[6]; | 
|  | TensorMap<Tensor<float, 1>> vec3(data3, 6); | 
|  | vec3 = vec1.sqrt(); | 
|  | float data4[6]; | 
|  | TensorMap<Tensor<float, 1, RowMajor>> vec4(data4, 6); | 
|  | vec4 = vec2.square(); | 
|  | float data5[6]; | 
|  | TensorMap<Tensor<float, 1, RowMajor>> vec5(data5, 6); | 
|  | vec5 = vec2.cube(); | 
|  |  | 
|  | VERIFY_IS_APPROX(vec3(0), sqrtf(4.0)); | 
|  | VERIFY_IS_APPROX(vec3(1), sqrtf(8.0)); | 
|  | VERIFY_IS_APPROX(vec3(2), sqrtf(15.0)); | 
|  | VERIFY_IS_APPROX(vec3(3), sqrtf(16.0)); | 
|  | VERIFY_IS_APPROX(vec3(4), sqrtf(23.0)); | 
|  | VERIFY_IS_APPROX(vec3(5), sqrtf(42.0)); | 
|  |  | 
|  | VERIFY_IS_APPROX(vec4(0), 0.0f); | 
|  | VERIFY_IS_APPROX(vec4(1), 1.0f); | 
|  | VERIFY_IS_APPROX(vec4(2), 2.0f * 2.0f); | 
|  | VERIFY_IS_APPROX(vec4(3), 3.0f * 3.0f); | 
|  | VERIFY_IS_APPROX(vec4(4), 4.0f * 4.0f); | 
|  | VERIFY_IS_APPROX(vec4(5), 5.0f * 5.0f); | 
|  |  | 
|  | VERIFY_IS_APPROX(vec5(0), 0.0f); | 
|  | VERIFY_IS_APPROX(vec5(1), 1.0f); | 
|  | VERIFY_IS_APPROX(vec5(2), 2.0f * 2.0f * 2.0f); | 
|  | VERIFY_IS_APPROX(vec5(3), 3.0f * 3.0f * 3.0f); | 
|  | VERIFY_IS_APPROX(vec5(4), 4.0f * 4.0f * 4.0f); | 
|  | VERIFY_IS_APPROX(vec5(5), 5.0f * 5.0f * 5.0f); | 
|  |  | 
|  | vec3 = vec1 + vec2; | 
|  | VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f); | 
|  | VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f); | 
|  | VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f); | 
|  | VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f); | 
|  | VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f); | 
|  | VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f); | 
|  | } | 
|  |  | 
|  | static void test_2d() | 
|  | { | 
|  | float data1[6]; | 
|  | TensorMap<Tensor<float, 2>> mat1(data1, 2, 3); | 
|  | float data2[6]; | 
|  | TensorMap<Tensor<float, 2, RowMajor>> mat2(data2, 2, 3); | 
|  |  | 
|  | mat1(0,0) = 0.0; | 
|  | mat1(0,1) = 1.0; | 
|  | mat1(0,2) = 2.0; | 
|  | mat1(1,0) = 3.0; | 
|  | mat1(1,1) = 4.0; | 
|  | mat1(1,2) = 5.0; | 
|  |  | 
|  | mat2(0,0) = -0.0; | 
|  | mat2(0,1) = -1.0; | 
|  | mat2(0,2) = -2.0; | 
|  | mat2(1,0) = -3.0; | 
|  | mat2(1,1) = -4.0; | 
|  | mat2(1,2) = -5.0; | 
|  |  | 
|  | Tensor<float, 2> mat3(2,3); | 
|  | Tensor<float, 2, RowMajor> mat4(2,3); | 
|  | mat3 = mat1.abs(); | 
|  | mat4 = mat2.abs(); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat3(0,0), 0.0f); | 
|  | VERIFY_IS_APPROX(mat3(0,1), 1.0f); | 
|  | VERIFY_IS_APPROX(mat3(0,2), 2.0f); | 
|  | VERIFY_IS_APPROX(mat3(1,0), 3.0f); | 
|  | VERIFY_IS_APPROX(mat3(1,1), 4.0f); | 
|  | VERIFY_IS_APPROX(mat3(1,2), 5.0f); | 
|  |  | 
|  | VERIFY_IS_APPROX(mat4(0,0), 0.0f); | 
|  | VERIFY_IS_APPROX(mat4(0,1), 1.0f); | 
|  | VERIFY_IS_APPROX(mat4(0,2), 2.0f); | 
|  | VERIFY_IS_APPROX(mat4(1,0), 3.0f); | 
|  | VERIFY_IS_APPROX(mat4(1,1), 4.0f); | 
|  | VERIFY_IS_APPROX(mat4(1,2), 5.0f); | 
|  | } | 
|  |  | 
|  | static void test_3d() | 
|  | { | 
|  | Tensor<float, 3> mat1(2,3,7); | 
|  | Tensor<float, 3, RowMajor> mat2(2,3,7); | 
|  |  | 
|  | float val = 1.0f; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | mat1(i,j,k) = val; | 
|  | mat2(i,j,k) = val; | 
|  | val += 1.0f; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Tensor<float, 3> mat3(2,3,7); | 
|  | mat3 = mat1 + mat1; | 
|  | Tensor<float, 3, RowMajor> mat4(2,3,7); | 
|  | mat4 = mat2 * 3.14f; | 
|  | Tensor<float, 3> mat5(2,3,7); | 
|  | mat5 = mat1.inverse().log(); | 
|  | Tensor<float, 3, RowMajor> mat6(2,3,7); | 
|  | mat6 = mat2.pow(0.5f) * 3.14f; | 
|  | Tensor<float, 3> mat7(2,3,7); | 
|  | mat7 = mat1.cwiseMax(mat5 * 2.0f).exp(); | 
|  | Tensor<float, 3, RowMajor> mat8(2,3,7); | 
|  | mat8 = (-mat2).exp() * 3.14f; | 
|  | Tensor<float, 3, RowMajor> mat9(2,3,7); | 
|  | mat9 = mat2 + 3.14f; | 
|  | Tensor<float, 3, RowMajor> mat10(2,3,7); | 
|  | mat10 = mat2 - 3.14f; | 
|  | Tensor<float, 3, RowMajor> mat11(2,3,7); | 
|  | mat11 = mat2 / 3.14f; | 
|  |  | 
|  | val = 1.0f; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | VERIFY_IS_APPROX(mat3(i,j,k), val + val); | 
|  | VERIFY_IS_APPROX(mat4(i,j,k), val * 3.14f); | 
|  | VERIFY_IS_APPROX(mat5(i,j,k), logf(1.0f/val)); | 
|  | VERIFY_IS_APPROX(mat6(i,j,k), sqrtf(val) * 3.14f); | 
|  | VERIFY_IS_APPROX(mat7(i,j,k), expf((std::max)(val, mat5(i,j,k) * 2.0f))); | 
|  | VERIFY_IS_APPROX(mat8(i,j,k), expf(-val) * 3.14f); | 
|  | VERIFY_IS_APPROX(mat9(i,j,k), val + 3.14f); | 
|  | VERIFY_IS_APPROX(mat10(i,j,k), val - 3.14f); | 
|  | VERIFY_IS_APPROX(mat11(i,j,k), val / 3.14f); | 
|  | val += 1.0f; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_constants() | 
|  | { | 
|  | Tensor<float, 3> mat1(2,3,7); | 
|  | Tensor<float, 3> mat2(2,3,7); | 
|  | Tensor<float, 3> mat3(2,3,7); | 
|  |  | 
|  | float val = 1.0f; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | mat1(i,j,k) = val; | 
|  | val += 1.0f; | 
|  | } | 
|  | } | 
|  | } | 
|  | mat2 = mat1.constant(3.14f); | 
|  | mat3 = mat1.cwiseMax(7.3f).exp(); | 
|  |  | 
|  | val = 1.0f; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | VERIFY_IS_APPROX(mat2(i,j,k), 3.14f); | 
|  | VERIFY_IS_APPROX(mat3(i,j,k), expf((std::max)(val, 7.3f))); | 
|  | val += 1.0f; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_boolean() | 
|  | { | 
|  | const int kSize = 31; | 
|  | Tensor<int, 1> vec(kSize); | 
|  | std::iota(vec.data(), vec.data() + kSize, 0); | 
|  |  | 
|  | // Test ||. | 
|  | Tensor<bool, 1> bool1 = vec < vec.constant(1) || vec > vec.constant(4); | 
|  | for (int i = 0; i < kSize; ++i) { | 
|  | bool expected = i < 1 || i > 4; | 
|  | VERIFY_IS_EQUAL(bool1[i], expected); | 
|  | } | 
|  |  | 
|  | // Test &&, including cast of operand vec. | 
|  | Tensor<bool, 1> bool2 = vec.cast<bool>() && vec < vec.constant(4); | 
|  | for (int i = 0; i < kSize; ++i) { | 
|  | bool expected = bool(i) && i < 4; | 
|  | VERIFY_IS_EQUAL(bool2[i], expected); | 
|  | } | 
|  |  | 
|  | // Compilation tests: | 
|  | // Test Tensor<bool> against results of cast or comparison; verifies that | 
|  | // CoeffReturnType is set to match Op return type of bool for Unary and Binary | 
|  | // Ops. | 
|  | Tensor<bool, 1> bool3 = vec.cast<bool>() && bool2; | 
|  | bool3 = vec < vec.constant(4) && bool2; | 
|  | } | 
|  |  | 
|  | static void test_functors() | 
|  | { | 
|  | Tensor<float, 3> mat1(2,3,7); | 
|  | Tensor<float, 3> mat2(2,3,7); | 
|  | Tensor<float, 3> mat3(2,3,7); | 
|  |  | 
|  | float val = 1.0f; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | mat1(i,j,k) = val; | 
|  | val += 1.0f; | 
|  | } | 
|  | } | 
|  | } | 
|  | mat2 = mat1.inverse().unaryExpr(&asinf); | 
|  | mat3 = mat1.unaryExpr(&tanhf); | 
|  |  | 
|  | val = 1.0f; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | VERIFY_IS_APPROX(mat2(i,j,k), asinf(1.0f / mat1(i,j,k))); | 
|  | VERIFY_IS_APPROX(mat3(i,j,k), tanhf(mat1(i,j,k))); | 
|  | val += 1.0f; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_type_casting() | 
|  | { | 
|  | Tensor<bool, 3> mat1(2,3,7); | 
|  | Tensor<float, 3> mat2(2,3,7); | 
|  | Tensor<double, 3> mat3(2,3,7); | 
|  | mat1.setRandom(); | 
|  | mat2.setRandom(); | 
|  |  | 
|  | mat3 = mat1.cast<double>(); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | VERIFY_IS_APPROX(mat3(i,j,k), mat1(i,j,k) ? 1.0 : 0.0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mat3 = mat2.cast<double>(); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | VERIFY_IS_APPROX(mat3(i,j,k), static_cast<double>(mat2(i,j,k))); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_select() | 
|  | { | 
|  | Tensor<float, 3> selector(2,3,7); | 
|  | Tensor<float, 3> mat1(2,3,7); | 
|  | Tensor<float, 3> mat2(2,3,7); | 
|  | Tensor<float, 3> result(2,3,7); | 
|  |  | 
|  | selector.setRandom(); | 
|  | mat1.setRandom(); | 
|  | mat2.setRandom(); | 
|  | result = (selector > selector.constant(0.5f)).select(mat1, mat2); | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | VERIFY_IS_APPROX(result(i,j,k), (selector(i,j,k) > 0.5f) ? mat1(i,j,k) : mat2(i,j,k)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void test_minmax_nan_propagation_templ() { | 
|  | for (int size = 1; size < 17; ++size) { | 
|  | const Scalar kNaN = std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | const Scalar kInf = std::numeric_limits<Scalar>::infinity(); | 
|  | const Scalar kZero(0); | 
|  | Tensor<Scalar, 1> vec_all_nan(size); | 
|  | Tensor<Scalar, 1> vec_one_nan(size); | 
|  | Tensor<Scalar, 1> vec_zero(size); | 
|  | vec_all_nan.setConstant(kNaN); | 
|  | vec_zero.setZero(); | 
|  | vec_one_nan.setZero(); | 
|  | vec_one_nan(size/2) = kNaN; | 
|  |  | 
|  | auto verify_all_nan = [&](const Tensor<Scalar, 1>& v) { | 
|  | for (int i = 0; i < size; ++i) { | 
|  | VERIFY((numext::isnan)(v(i))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | auto verify_all_zero = [&](const Tensor<Scalar, 1>& v) { | 
|  | for (int i = 0; i < size; ++i) { | 
|  | VERIFY_IS_EQUAL(v(i), Scalar(0)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Test NaN propagating max. | 
|  | // max(nan, nan) = nan | 
|  | // max(nan, 0) = nan | 
|  | // max(0, nan) = nan | 
|  | // max(0, 0) = 0 | 
|  | verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(kNaN)); | 
|  | verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(vec_all_nan)); | 
|  | verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(kZero)); | 
|  | verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(vec_zero)); | 
|  | verify_all_nan(vec_zero.template cwiseMax<PropagateNaN>(kNaN)); | 
|  | verify_all_nan(vec_zero.template cwiseMax<PropagateNaN>(vec_all_nan)); | 
|  | verify_all_zero(vec_zero.template cwiseMax<PropagateNaN>(kZero)); | 
|  | verify_all_zero(vec_zero.template cwiseMax<PropagateNaN>(vec_zero)); | 
|  |  | 
|  | // Test number propagating max. | 
|  | // max(nan, nan) = nan | 
|  | // max(nan, 0) = 0 | 
|  | // max(0, nan) = 0 | 
|  | // max(0, 0) = 0 | 
|  | verify_all_nan(vec_all_nan.template cwiseMax<PropagateNumbers>(kNaN)); | 
|  | verify_all_nan(vec_all_nan.template cwiseMax<PropagateNumbers>(vec_all_nan)); | 
|  | verify_all_zero(vec_all_nan.template cwiseMax<PropagateNumbers>(kZero)); | 
|  | verify_all_zero(vec_all_nan.template cwiseMax<PropagateNumbers>(vec_zero)); | 
|  | verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(kNaN)); | 
|  | verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(vec_all_nan)); | 
|  | verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(kZero)); | 
|  | verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(vec_zero)); | 
|  |  | 
|  | // Test NaN propagating min. | 
|  | // min(nan, nan) = nan | 
|  | // min(nan, 0) = nan | 
|  | // min(0, nan) = nan | 
|  | // min(0, 0) = 0 | 
|  | verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(kNaN)); | 
|  | verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(vec_all_nan)); | 
|  | verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(kZero)); | 
|  | verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(vec_zero)); | 
|  | verify_all_nan(vec_zero.template cwiseMin<PropagateNaN>(kNaN)); | 
|  | verify_all_nan(vec_zero.template cwiseMin<PropagateNaN>(vec_all_nan)); | 
|  | verify_all_zero(vec_zero.template cwiseMin<PropagateNaN>(kZero)); | 
|  | verify_all_zero(vec_zero.template cwiseMin<PropagateNaN>(vec_zero)); | 
|  |  | 
|  | // Test number propagating min. | 
|  | // min(nan, nan) = nan | 
|  | // min(nan, 0) = 0 | 
|  | // min(0, nan) = 0 | 
|  | // min(0, 0) = 0 | 
|  | verify_all_nan(vec_all_nan.template cwiseMin<PropagateNumbers>(kNaN)); | 
|  | verify_all_nan(vec_all_nan.template cwiseMin<PropagateNumbers>(vec_all_nan)); | 
|  | verify_all_zero(vec_all_nan.template cwiseMin<PropagateNumbers>(kZero)); | 
|  | verify_all_zero(vec_all_nan.template cwiseMin<PropagateNumbers>(vec_zero)); | 
|  | verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(kNaN)); | 
|  | verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(vec_all_nan)); | 
|  | verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(kZero)); | 
|  | verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(vec_zero)); | 
|  |  | 
|  | // Test min and max reduction | 
|  | Tensor<Scalar, 0> val; | 
|  | val = vec_zero.minimum(); | 
|  | VERIFY_IS_EQUAL(val(), kZero); | 
|  | val = vec_zero.template minimum<PropagateNaN>(); | 
|  | VERIFY_IS_EQUAL(val(), kZero); | 
|  | val = vec_zero.template minimum<PropagateNumbers>(); | 
|  | VERIFY_IS_EQUAL(val(), kZero); | 
|  | val = vec_zero.maximum(); | 
|  | VERIFY_IS_EQUAL(val(), kZero); | 
|  | val = vec_zero.template maximum<PropagateNaN>(); | 
|  | VERIFY_IS_EQUAL(val(), kZero); | 
|  | val = vec_zero.template maximum<PropagateNumbers>(); | 
|  | VERIFY_IS_EQUAL(val(), kZero); | 
|  |  | 
|  | // Test NaN propagation for tensor of all NaNs. | 
|  | val = vec_all_nan.template minimum<PropagateNaN>(); | 
|  | VERIFY((numext::isnan)(val())); | 
|  | val = vec_all_nan.template minimum<PropagateNumbers>(); | 
|  | VERIFY_IS_EQUAL(val(), kInf); | 
|  | val = vec_all_nan.template maximum<PropagateNaN>(); | 
|  | VERIFY((numext::isnan)(val())); | 
|  | val = vec_all_nan.template maximum<PropagateNumbers>(); | 
|  | VERIFY_IS_EQUAL(val(), -kInf); | 
|  |  | 
|  | // Test NaN propagation for tensor with a single NaN. | 
|  | val = vec_one_nan.template minimum<PropagateNaN>(); | 
|  | VERIFY((numext::isnan)(val())); | 
|  | val = vec_one_nan.template minimum<PropagateNumbers>(); | 
|  | VERIFY_IS_EQUAL(val(), (size == 1 ? kInf : kZero)); | 
|  | val = vec_one_nan.template maximum<PropagateNaN>(); | 
|  | VERIFY((numext::isnan)(val())); | 
|  | val = vec_one_nan.template maximum<PropagateNumbers>(); | 
|  | VERIFY_IS_EQUAL(val(), (size == 1 ? -kInf : kZero)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_clip() | 
|  | { | 
|  | Tensor<float, 1> vec(6); | 
|  | vec(0) = 4.0; | 
|  | vec(1) = 8.0; | 
|  | vec(2) = 15.0; | 
|  | vec(3) = 16.0; | 
|  | vec(4) = 23.0; | 
|  | vec(5) = 42.0; | 
|  |  | 
|  | float kMin = 20; | 
|  | float kMax = 30; | 
|  |  | 
|  | Tensor<float, 1> vec_clipped(6); | 
|  | vec_clipped = vec.clip(kMin, kMax); | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | VERIFY_IS_EQUAL(vec_clipped(i), numext::mini(numext::maxi(vec(i), kMin), kMax)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_minmax_nan_propagation() | 
|  | { | 
|  | test_minmax_nan_propagation_templ<float>(); | 
|  | test_minmax_nan_propagation_templ<double>(); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_expr) | 
|  | { | 
|  | CALL_SUBTEST(test_1d()); | 
|  | CALL_SUBTEST(test_2d()); | 
|  | CALL_SUBTEST(test_3d()); | 
|  | CALL_SUBTEST(test_constants()); | 
|  | CALL_SUBTEST(test_boolean()); | 
|  | CALL_SUBTEST(test_functors()); | 
|  | CALL_SUBTEST(test_type_casting()); | 
|  | CALL_SUBTEST(test_select()); | 
|  | CALL_SUBTEST(test_clip()); | 
|  |  | 
|  | // Nan propagation does currently not work like one would expect from std::max/std::min, | 
|  | // so we disable it for now | 
|  | #if !EIGEN_ARCH_ARM_OR_ARM64 | 
|  | CALL_SUBTEST(test_minmax_nan_propagation()); | 
|  | #endif | 
|  | } |