| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_GENERALIZEDEIGENSOLVER_H | 
 | #define EIGEN_GENERALIZEDEIGENSOLVER_H | 
 |  | 
 | #include "./RealQZ.h" | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
 |   * | 
 |   * | 
 |   * \class GeneralizedEigenSolver | 
 |   * | 
 |   * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices | 
 |   * | 
 |   * \tparam _MatrixType the type of the matrices of which we are computing the | 
 |   * eigen-decomposition; this is expected to be an instantiation of the Matrix | 
 |   * class template. Currently, only real matrices are supported. | 
 |   * | 
 |   * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars | 
 |   * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$.  If | 
 |   * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and | 
 |   * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = | 
 |   * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we | 
 |   * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition. | 
 |   * | 
 |   * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the | 
 |   * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is | 
 |   * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$ | 
 |   * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero, | 
 |   * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that: | 
 |   * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A  = u_i^T B \f$ where \f$ u_i \f$ is | 
 |   * called the left eigenvector. | 
 |   * | 
 |   * Call the function compute() to compute the generalized eigenvalues and eigenvectors of | 
 |   * a given matrix pair. Alternatively, you can use the | 
 |   * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the | 
 |   * eigenvalues and eigenvectors at construction time. Once the eigenvalue and | 
 |   * eigenvectors are computed, they can be retrieved with the eigenvalues() and | 
 |   * eigenvectors() functions. | 
 |   * | 
 |   * Here is an usage example of this class: | 
 |   * Example: \include GeneralizedEigenSolver.cpp | 
 |   * Output: \verbinclude GeneralizedEigenSolver.out | 
 |   * | 
 |   * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver | 
 |   */ | 
 | template<typename _MatrixType> class GeneralizedEigenSolver | 
 | { | 
 |   public: | 
 |  | 
 |     /** \brief Synonym for the template parameter \p _MatrixType. */ | 
 |     typedef _MatrixType MatrixType; | 
 |  | 
 |     enum { | 
 |       RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |       ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |       Options = MatrixType::Options, | 
 |       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |     }; | 
 |  | 
 |     /** \brief Scalar type for matrices of type #MatrixType. */ | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
 |  | 
 |     /** \brief Complex scalar type for #MatrixType.  | 
 |       * | 
 |       * This is \c std::complex<Scalar> if #Scalar is real (e.g., | 
 |       * \c float or \c double) and just \c Scalar if #Scalar is | 
 |       * complex. | 
 |       */ | 
 |     typedef std::complex<RealScalar> ComplexScalar; | 
 |  | 
 |     /** \brief Type for vector of real scalar values eigenvalues as returned by betas(). | 
 |       * | 
 |       * This is a column vector with entries of type #Scalar. | 
 |       * The length of the vector is the size of #MatrixType. | 
 |       */ | 
 |     typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType; | 
 |  | 
 |     /** \brief Type for vector of complex scalar values eigenvalues as returned by betas(). | 
 |       * | 
 |       * This is a column vector with entries of type #ComplexScalar. | 
 |       * The length of the vector is the size of #MatrixType. | 
 |       */ | 
 |     typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType; | 
 |  | 
 |     /** \brief Expression type for the eigenvalues as returned by eigenvalues(). | 
 |       */ | 
 |     typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType; | 
 |  | 
 |     /** \brief Type for matrix of eigenvectors as returned by eigenvectors().  | 
 |       * | 
 |       * This is a square matrix with entries of type #ComplexScalar.  | 
 |       * The size is the same as the size of #MatrixType. | 
 |       */ | 
 |     typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType; | 
 |  | 
 |     /** \brief Default constructor. | 
 |       * | 
 |       * The default constructor is useful in cases in which the user intends to | 
 |       * perform decompositions via EigenSolver::compute(const MatrixType&, bool). | 
 |       * | 
 |       * \sa compute() for an example. | 
 |       */ | 
 |     GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {} | 
 |  | 
 |     /** \brief Default constructor with memory preallocation | 
 |       * | 
 |       * Like the default constructor but with preallocation of the internal data | 
 |       * according to the specified problem \a size. | 
 |       * \sa GeneralizedEigenSolver() | 
 |       */ | 
 |     explicit GeneralizedEigenSolver(Index size) | 
 |       : m_eivec(size, size), | 
 |         m_alphas(size), | 
 |         m_betas(size), | 
 |         m_isInitialized(false), | 
 |         m_eigenvectorsOk(false), | 
 |         m_realQZ(size), | 
 |         m_matS(size, size), | 
 |         m_tmp(size) | 
 |     {} | 
 |  | 
 |     /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair. | 
 |       *  | 
 |       * \param[in]  A  Square matrix whose eigendecomposition is to be computed. | 
 |       * \param[in]  B  Square matrix whose eigendecomposition is to be computed. | 
 |       * \param[in]  computeEigenvectors  If true, both the eigenvectors and the | 
 |       *    eigenvalues are computed; if false, only the eigenvalues are computed. | 
 |       * | 
 |       * This constructor calls compute() to compute the generalized eigenvalues | 
 |       * and eigenvectors. | 
 |       * | 
 |       * \sa compute() | 
 |       */ | 
 |     explicit GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true) | 
 |       : m_eivec(A.rows(), A.cols()), | 
 |         m_alphas(A.cols()), | 
 |         m_betas(A.cols()), | 
 |         m_isInitialized(false), | 
 |         m_eigenvectorsOk(false), | 
 |         m_realQZ(A.cols()), | 
 |         m_matS(A.rows(), A.cols()), | 
 |         m_tmp(A.cols()) | 
 |     { | 
 |       compute(A, B, computeEigenvectors); | 
 |     } | 
 |  | 
 |     /* \brief Returns the computed generalized eigenvectors. | 
 |       * | 
 |       * \returns  %Matrix whose columns are the (possibly complex) eigenvectors. | 
 |       * | 
 |       * \pre Either the constructor  | 
 |       * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function | 
 |       * compute(const MatrixType&, const MatrixType& bool) has been called before, and | 
 |       * \p computeEigenvectors was set to true (the default). | 
 |       * | 
 |       * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding | 
 |       * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The | 
 |       * eigenvectors are normalized to have (Euclidean) norm equal to one. The | 
 |       * matrix returned by this function is the matrix \f$ V \f$ in the | 
 |       * generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists. | 
 |       * | 
 |       * \sa eigenvalues() | 
 |       */ | 
 | //    EigenvectorsType eigenvectors() const; | 
 |  | 
 |     /** \brief Returns an expression of the computed generalized eigenvalues. | 
 |       * | 
 |       * \returns An expression of the column vector containing the eigenvalues. | 
 |       * | 
 |       * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode | 
 |       * Not that betas might contain zeros. It is therefore not recommended to use this function, | 
 |       * but rather directly deal with the alphas and betas vectors. | 
 |       * | 
 |       * \pre Either the constructor  | 
 |       * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function | 
 |       * compute(const MatrixType&,const MatrixType&,bool) has been called before. | 
 |       * | 
 |       * The eigenvalues are repeated according to their algebraic multiplicity, | 
 |       * so there are as many eigenvalues as rows in the matrix. The eigenvalues  | 
 |       * are not sorted in any particular order. | 
 |       * | 
 |       * \sa alphas(), betas(), eigenvectors() | 
 |       */ | 
 |     EigenvalueType eigenvalues() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized."); | 
 |       return EigenvalueType(m_alphas,m_betas); | 
 |     } | 
 |  | 
 |     /** \returns A const reference to the vectors containing the alpha values | 
 |       * | 
 |       * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). | 
 |       * | 
 |       * \sa betas(), eigenvalues() */ | 
 |     ComplexVectorType alphas() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized."); | 
 |       return m_alphas; | 
 |     } | 
 |  | 
 |     /** \returns A const reference to the vectors containing the beta values | 
 |       * | 
 |       * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). | 
 |       * | 
 |       * \sa alphas(), eigenvalues() */ | 
 |     VectorType betas() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized."); | 
 |       return m_betas; | 
 |     } | 
 |  | 
 |     /** \brief Computes generalized eigendecomposition of given matrix. | 
 |       *  | 
 |       * \param[in]  A  Square matrix whose eigendecomposition is to be computed. | 
 |       * \param[in]  B  Square matrix whose eigendecomposition is to be computed. | 
 |       * \param[in]  computeEigenvectors  If true, both the eigenvectors and the | 
 |       *    eigenvalues are computed; if false, only the eigenvalues are | 
 |       *    computed.  | 
 |       * \returns    Reference to \c *this | 
 |       * | 
 |       * This function computes the eigenvalues of the real matrix \p matrix. | 
 |       * The eigenvalues() function can be used to retrieve them.  If  | 
 |       * \p computeEigenvectors is true, then the eigenvectors are also computed | 
 |       * and can be retrieved by calling eigenvectors(). | 
 |       * | 
 |       * The matrix is first reduced to real generalized Schur form using the RealQZ | 
 |       * class. The generalized Schur decomposition is then used to compute the eigenvalues | 
 |       * and eigenvectors. | 
 |       * | 
 |       * The cost of the computation is dominated by the cost of the | 
 |       * generalized Schur decomposition. | 
 |       * | 
 |       * This method reuses of the allocated data in the GeneralizedEigenSolver object. | 
 |       */ | 
 |     GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true); | 
 |  | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
 |       return m_realQZ.info(); | 
 |     } | 
 |  | 
 |     /** Sets the maximal number of iterations allowed. | 
 |     */ | 
 |     GeneralizedEigenSolver& setMaxIterations(Index maxIters) | 
 |     { | 
 |       m_realQZ.setMaxIterations(maxIters); | 
 |       return *this; | 
 |     } | 
 |  | 
 |   protected: | 
 |      | 
 |     static void check_template_parameters() | 
 |     { | 
 |       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
 |       EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); | 
 |     } | 
 |      | 
 |     MatrixType m_eivec; | 
 |     ComplexVectorType m_alphas; | 
 |     VectorType m_betas; | 
 |     bool m_isInitialized; | 
 |     bool m_eigenvectorsOk; | 
 |     RealQZ<MatrixType> m_realQZ; | 
 |     MatrixType m_matS; | 
 |  | 
 |     typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; | 
 |     ColumnVectorType m_tmp; | 
 | }; | 
 |  | 
 | //template<typename MatrixType> | 
 | //typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const | 
 | //{ | 
 | //  eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
 | //  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
 | //  Index n = m_eivec.cols(); | 
 | //  EigenvectorsType matV(n,n); | 
 | //  // TODO | 
 | //  return matV; | 
 | //} | 
 |  | 
 | template<typename MatrixType> | 
 | GeneralizedEigenSolver<MatrixType>& | 
 | GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors) | 
 | { | 
 |   check_template_parameters(); | 
 |    | 
 |   using std::sqrt; | 
 |   using std::abs; | 
 |   eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows()); | 
 |  | 
 |   // Reduce to generalized real Schur form: | 
 |   // A = Q S Z and B = Q T Z | 
 |   m_realQZ.compute(A, B, computeEigenvectors); | 
 |  | 
 |   if (m_realQZ.info() == Success) | 
 |   { | 
 |     m_matS = m_realQZ.matrixS(); | 
 |     if (computeEigenvectors) | 
 |       m_eivec = m_realQZ.matrixZ().transpose(); | 
 |    | 
 |     // Compute eigenvalues from matS | 
 |     m_alphas.resize(A.cols()); | 
 |     m_betas.resize(A.cols()); | 
 |     Index i = 0; | 
 |     while (i < A.cols()) | 
 |     { | 
 |       if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0)) | 
 |       { | 
 |         m_alphas.coeffRef(i) = m_matS.coeff(i, i); | 
 |         m_betas.coeffRef(i)  = m_realQZ.matrixT().coeff(i,i); | 
 |         ++i; | 
 |       } | 
 |       else | 
 |       { | 
 |         Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1)); | 
 |         Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1))); | 
 |         m_alphas.coeffRef(i)   = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z); | 
 |         m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z); | 
 |  | 
 |         m_betas.coeffRef(i)   = m_realQZ.matrixT().coeff(i,i); | 
 |         m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i); | 
 |         i += 2; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   m_isInitialized = true; | 
 |   m_eigenvectorsOk = false;//computeEigenvectors; | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_GENERALIZEDEIGENSOLVER_H |