|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | /**  ZHEMV  performs the matrix-vector  operation | 
|  | * | 
|  | *     y := alpha*A*x + beta*y, | 
|  | * | 
|  | *  where alpha and beta are scalars, x and y are n element vectors and | 
|  | *  A is an n by n hermitian matrix. | 
|  | */ | 
|  | int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) | 
|  | { | 
|  | typedef void (*functype)(int, const Scalar*, int, const Scalar*, int, Scalar*, Scalar); | 
|  | static functype func[2]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<2; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | func[UP] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run); | 
|  | func[LO] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  | Scalar alpha  = *reinterpret_cast<Scalar*>(palpha); | 
|  | Scalar beta   = *reinterpret_cast<Scalar*>(pbeta); | 
|  |  | 
|  | // check arguments | 
|  | int info = 0; | 
|  | if(UPLO(*uplo)==INVALID)        info = 1; | 
|  | else if(*n<0)                   info = 2; | 
|  | else if(*lda<std::max(1,*n))    info = 5; | 
|  | else if(*incx==0)               info = 7; | 
|  | else if(*incy==0)               info = 10; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6); | 
|  |  | 
|  | if(*n==0) | 
|  | return 1; | 
|  |  | 
|  | Scalar* actual_x = get_compact_vector(x,*n,*incx); | 
|  | Scalar* actual_y = get_compact_vector(y,*n,*incy); | 
|  |  | 
|  | if(beta!=Scalar(1)) | 
|  | { | 
|  | if(beta==Scalar(0)) make_vector(actual_y, *n).setZero(); | 
|  | else                make_vector(actual_y, *n) *= beta; | 
|  | } | 
|  |  | 
|  | if(alpha!=Scalar(0)) | 
|  | { | 
|  | int code = UPLO(*uplo); | 
|  | if(code>=2 || func[code]==0) | 
|  | return 0; | 
|  |  | 
|  | func[code](*n, a, *lda, actual_x, 1, actual_y, alpha); | 
|  | } | 
|  |  | 
|  | if(actual_x!=x) delete[] actual_x; | 
|  | if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /**  ZHBMV  performs the matrix-vector  operation | 
|  | * | 
|  | *     y := alpha*A*x + beta*y, | 
|  | * | 
|  | *  where alpha and beta are scalars, x and y are n element vectors and | 
|  | *  A is an n by n hermitian band matrix, with k super-diagonals. | 
|  | */ | 
|  | // int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, | 
|  | //                           RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) | 
|  | // { | 
|  | //   return 1; | 
|  | // } | 
|  |  | 
|  | /**  ZHPMV  performs the matrix-vector operation | 
|  | * | 
|  | *     y := alpha*A*x + beta*y, | 
|  | * | 
|  | *  where alpha and beta are scalars, x and y are n element vectors and | 
|  | *  A is an n by n hermitian matrix, supplied in packed form. | 
|  | */ | 
|  | // int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) | 
|  | // { | 
|  | //   return 1; | 
|  | // } | 
|  |  | 
|  | /**  ZHPR    performs the hermitian rank 1 operation | 
|  | * | 
|  | *     A := alpha*x*conjg( x' ) + A, | 
|  | * | 
|  | *  where alpha is a real scalar, x is an n element vector and A is an | 
|  | *  n by n hermitian matrix, supplied in packed form. | 
|  | */ | 
|  | int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap) | 
|  | { | 
|  | typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar); | 
|  | static functype func[2]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<2; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | func[UP] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run); | 
|  | func[LO] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* ap = reinterpret_cast<Scalar*>(pap); | 
|  | RealScalar alpha = *palpha; | 
|  |  | 
|  | int info = 0; | 
|  | if(UPLO(*uplo)==INVALID)                                            info = 1; | 
|  | else if(*n<0)                                                       info = 2; | 
|  | else if(*incx==0)                                                   info = 5; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"HPR  ",&info,6); | 
|  |  | 
|  | if(alpha==Scalar(0)) | 
|  | return 1; | 
|  |  | 
|  | Scalar* x_cpy = get_compact_vector(x, *n, *incx); | 
|  |  | 
|  | int code = UPLO(*uplo); | 
|  | if(code>=2 || func[code]==0) | 
|  | return 0; | 
|  |  | 
|  | func[code](*n, ap, x_cpy, alpha); | 
|  |  | 
|  | if(x_cpy!=x)  delete[] x_cpy; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /**  ZHPR2  performs the hermitian rank 2 operation | 
|  | * | 
|  | *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, | 
|  | * | 
|  | *  where alpha is a scalar, x and y are n element vectors and A is an | 
|  | *  n by n hermitian matrix, supplied in packed form. | 
|  | */ | 
|  | int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) | 
|  | { | 
|  | typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar); | 
|  | static functype func[2]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<2; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | func[UP] = (internal::packed_rank2_update_selector<Scalar,int,Upper>::run); | 
|  | func[LO] = (internal::packed_rank2_update_selector<Scalar,int,Lower>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  | Scalar* ap = reinterpret_cast<Scalar*>(pap); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if(UPLO(*uplo)==INVALID)                                            info = 1; | 
|  | else if(*n<0)                                                       info = 2; | 
|  | else if(*incx==0)                                                   info = 5; | 
|  | else if(*incy==0)                                                   info = 7; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6); | 
|  |  | 
|  | if(alpha==Scalar(0)) | 
|  | return 1; | 
|  |  | 
|  | Scalar* x_cpy = get_compact_vector(x, *n, *incx); | 
|  | Scalar* y_cpy = get_compact_vector(y, *n, *incy); | 
|  |  | 
|  | int code = UPLO(*uplo); | 
|  | if(code>=2 || func[code]==0) | 
|  | return 0; | 
|  |  | 
|  | func[code](*n, ap, x_cpy, y_cpy, alpha); | 
|  |  | 
|  | if(x_cpy!=x)  delete[] x_cpy; | 
|  | if(y_cpy!=y)  delete[] y_cpy; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /**  ZHER   performs the hermitian rank 1 operation | 
|  | * | 
|  | *     A := alpha*x*conjg( x' ) + A, | 
|  | * | 
|  | *  where alpha is a real scalar, x is an n element vector and A is an | 
|  | *  n by n hermitian matrix. | 
|  | */ | 
|  | int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) | 
|  | { | 
|  | typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&); | 
|  | static functype func[2]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<2; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | func[UP] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run); | 
|  | func[LO] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if(UPLO(*uplo)==INVALID)                                            info = 1; | 
|  | else if(*n<0)                                                       info = 2; | 
|  | else if(*incx==0)                                                   info = 5; | 
|  | else if(*lda<std::max(1,*n))                                        info = 7; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"HER  ",&info,6); | 
|  |  | 
|  | if(alpha==RealScalar(0)) | 
|  | return 1; | 
|  |  | 
|  | Scalar* x_cpy = get_compact_vector(x, *n, *incx); | 
|  |  | 
|  | int code = UPLO(*uplo); | 
|  | if(code>=2 || func[code]==0) | 
|  | return 0; | 
|  |  | 
|  | func[code](*n, a, *lda, x_cpy, x_cpy, alpha); | 
|  |  | 
|  | matrix(a,*n,*n,*lda).diagonal().imag().setZero(); | 
|  |  | 
|  | if(x_cpy!=x)  delete[] x_cpy; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /**  ZHER2  performs the hermitian rank 2 operation | 
|  | * | 
|  | *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, | 
|  | * | 
|  | *  where alpha is a scalar, x and y are n element vectors and A is an n | 
|  | *  by n hermitian matrix. | 
|  | */ | 
|  | int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) | 
|  | { | 
|  | typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar); | 
|  | static functype func[2]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<2; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | func[UP] = (internal::rank2_update_selector<Scalar,int,Upper>::run); | 
|  | func[LO] = (internal::rank2_update_selector<Scalar,int,Lower>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if(UPLO(*uplo)==INVALID)                                            info = 1; | 
|  | else if(*n<0)                                                       info = 2; | 
|  | else if(*incx==0)                                                   info = 5; | 
|  | else if(*incy==0)                                                   info = 7; | 
|  | else if(*lda<std::max(1,*n))                                        info = 9; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6); | 
|  |  | 
|  | if(alpha==Scalar(0)) | 
|  | return 1; | 
|  |  | 
|  | Scalar* x_cpy = get_compact_vector(x, *n, *incx); | 
|  | Scalar* y_cpy = get_compact_vector(y, *n, *incy); | 
|  |  | 
|  | int code = UPLO(*uplo); | 
|  | if(code>=2 || func[code]==0) | 
|  | return 0; | 
|  |  | 
|  | func[code](*n, a, *lda, x_cpy, y_cpy, alpha); | 
|  |  | 
|  | matrix(a,*n,*n,*lda).diagonal().imag().setZero(); | 
|  |  | 
|  | if(x_cpy!=x)  delete[] x_cpy; | 
|  | if(y_cpy!=y)  delete[] y_cpy; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /**  ZGERU  performs the rank 1 operation | 
|  | * | 
|  | *     A := alpha*x*y' + A, | 
|  | * | 
|  | *  where alpha is a scalar, x is an m element vector, y is an n element | 
|  | *  vector and A is an m by n matrix. | 
|  | */ | 
|  | int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) | 
|  | { | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if(*m<0)                                                       info = 1; | 
|  | else if(*n<0)                                                       info = 2; | 
|  | else if(*incx==0)                                                   info = 5; | 
|  | else if(*incy==0)                                                   info = 7; | 
|  | else if(*lda<std::max(1,*m))                                        info = 9; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6); | 
|  |  | 
|  | if(alpha==Scalar(0)) | 
|  | return 1; | 
|  |  | 
|  | Scalar* x_cpy = get_compact_vector(x,*m,*incx); | 
|  | Scalar* y_cpy = get_compact_vector(y,*n,*incy); | 
|  |  | 
|  | internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); | 
|  |  | 
|  | if(x_cpy!=x)  delete[] x_cpy; | 
|  | if(y_cpy!=y)  delete[] y_cpy; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /**  ZGERC  performs the rank 1 operation | 
|  | * | 
|  | *     A := alpha*x*conjg( y' ) + A, | 
|  | * | 
|  | *  where alpha is a scalar, x is an m element vector, y is an n element | 
|  | *  vector and A is an m by n matrix. | 
|  | */ | 
|  | int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) | 
|  | { | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if(*m<0)                                                       info = 1; | 
|  | else if(*n<0)                                                       info = 2; | 
|  | else if(*incx==0)                                                   info = 5; | 
|  | else if(*incy==0)                                                   info = 7; | 
|  | else if(*lda<std::max(1,*m))                                        info = 9; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6); | 
|  |  | 
|  | if(alpha==Scalar(0)) | 
|  | return 1; | 
|  |  | 
|  | Scalar* x_cpy = get_compact_vector(x,*m,*incx); | 
|  | Scalar* y_cpy = get_compact_vector(y,*n,*incy); | 
|  |  | 
|  | internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); | 
|  |  | 
|  | if(x_cpy!=x)  delete[] x_cpy; | 
|  | if(y_cpy!=y)  delete[] y_cpy; | 
|  |  | 
|  | return 1; | 
|  | } |