|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #define EIGEN_NO_STATIC_ASSERT | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void basicStuff(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | // this test relies a lot on Random.h, and there's not much more that we can do | 
|  | // to test it, hence I consider that we will have tested Random.h | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), | 
|  | square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); | 
|  | VectorType v1 = VectorType::Random(rows), | 
|  | vzero = VectorType::Zero(rows); | 
|  | SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows); | 
|  |  | 
|  | Scalar x = 0; | 
|  | while(x == Scalar(0)) x = internal::random<Scalar>(); | 
|  |  | 
|  | Index r = internal::random<Index>(0, rows-1), | 
|  | c = internal::random<Index>(0, cols-1); | 
|  |  | 
|  | m1.coeffRef(r,c) = x; | 
|  | VERIFY_IS_APPROX(x, m1.coeff(r,c)); | 
|  | m1(r,c) = x; | 
|  | VERIFY_IS_APPROX(x, m1(r,c)); | 
|  | v1.coeffRef(r) = x; | 
|  | VERIFY_IS_APPROX(x, v1.coeff(r)); | 
|  | v1(r) = x; | 
|  | VERIFY_IS_APPROX(x, v1(r)); | 
|  | v1[r] = x; | 
|  | VERIFY_IS_APPROX(x, v1[r]); | 
|  |  | 
|  | VERIFY_IS_APPROX(               v1,    v1); | 
|  | VERIFY_IS_NOT_APPROX(           v1,    2*v1); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.squaredNorm()); | 
|  | VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1); | 
|  | VERIFY_IS_APPROX(               vzero, v1-v1); | 
|  | VERIFY_IS_APPROX(               m1,    m1); | 
|  | VERIFY_IS_NOT_APPROX(           m1,    2*m1); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1); | 
|  | VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1); | 
|  | VERIFY_IS_APPROX(               mzero, m1-m1); | 
|  |  | 
|  | // always test operator() on each read-only expression class, | 
|  | // in order to check const-qualifiers. | 
|  | // indeed, if an expression class (here Zero) is meant to be read-only, | 
|  | // hence has no _write() method, the corresponding MatrixBase method (here zero()) | 
|  | // should return a const-qualified object so that it is the const-qualified | 
|  | // operator() that gets called, which in turn calls _read(). | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1)); | 
|  |  | 
|  | // now test copying a row-vector into a (column-)vector and conversely. | 
|  | square.col(r) = square.row(r).eval(); | 
|  | Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); | 
|  | Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); | 
|  | rv = square.row(r); | 
|  | cv = square.col(r); | 
|  |  | 
|  | VERIFY_IS_APPROX(rv, cv.transpose()); | 
|  |  | 
|  | if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) | 
|  | { | 
|  | VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); | 
|  | } | 
|  |  | 
|  | if(cols!=1 && rows!=1) | 
|  | { | 
|  | VERIFY_RAISES_ASSERT(m1[0]); | 
|  | VERIFY_RAISES_ASSERT((m1+m1)[0]); | 
|  | } | 
|  |  | 
|  | VERIFY_IS_APPROX(m3 = m1,m1); | 
|  | MatrixType m4; | 
|  | VERIFY_IS_APPROX(m4 = m1,m1); | 
|  |  | 
|  | m3.real() = m1.real(); | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real()); | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real()); | 
|  |  | 
|  | // check == / != operators | 
|  | VERIFY(m1==m1); | 
|  | VERIFY(m1!=m2); | 
|  | VERIFY(!(m1==m2)); | 
|  | VERIFY(!(m1!=m1)); | 
|  | m1 = m2; | 
|  | VERIFY(m1==m2); | 
|  | VERIFY(!(m1!=m2)); | 
|  |  | 
|  | // check automatic transposition | 
|  | sm2.setZero(); | 
|  | for(typename MatrixType::Index i=0;i<rows;++i) | 
|  | sm2.col(i) = sm1.row(i); | 
|  | VERIFY_IS_APPROX(sm2,sm1.transpose()); | 
|  |  | 
|  | sm2.setZero(); | 
|  | for(typename MatrixType::Index i=0;i<rows;++i) | 
|  | sm2.col(i).noalias() = sm1.row(i); | 
|  | VERIFY_IS_APPROX(sm2,sm1.transpose()); | 
|  |  | 
|  | sm2.setZero(); | 
|  | for(typename MatrixType::Index i=0;i<rows;++i) | 
|  | sm2.col(i).noalias() += sm1.row(i); | 
|  | VERIFY_IS_APPROX(sm2,sm1.transpose()); | 
|  |  | 
|  | sm2.setZero(); | 
|  | for(typename MatrixType::Index i=0;i<rows;++i) | 
|  | sm2.col(i).noalias() -= sm1.row(i); | 
|  | VERIFY_IS_APPROX(sm2,-sm1.transpose()); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void basicStuffComplex(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(), | 
|  | s2 = internal::random<Scalar>(); | 
|  |  | 
|  | VERIFY(numext::real(s1)==numext::real_ref(s1)); | 
|  | VERIFY(numext::imag(s1)==numext::imag_ref(s1)); | 
|  | numext::real_ref(s1) = numext::real(s2); | 
|  | numext::imag_ref(s1) = numext::imag(s2); | 
|  | VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon())); | 
|  | // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed. | 
|  |  | 
|  | RealMatrixType rm1 = RealMatrixType::Random(rows,cols), | 
|  | rm2 = RealMatrixType::Random(rows,cols); | 
|  | MatrixType cm(rows,cols); | 
|  | cm.real() = rm1; | 
|  | cm.imag() = rm2; | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); | 
|  | rm1.setZero(); | 
|  | rm2.setZero(); | 
|  | rm1 = cm.real(); | 
|  | rm2 = cm.imag(); | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); | 
|  | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); | 
|  | cm.real().setZero(); | 
|  | VERIFY(static_cast<const MatrixType&>(cm).real().isZero()); | 
|  | VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero()); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_2 | 
|  | void casting() | 
|  | { | 
|  | Matrix4f m = Matrix4f::Random(), m2; | 
|  | Matrix4d n = m.cast<double>(); | 
|  | VERIFY(m.isApprox(n.cast<float>())); | 
|  | m2 = m.cast<float>(); // check the specialization when NewType == Type | 
|  | VERIFY(m.isApprox(m2)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | template <typename Scalar> | 
|  | void fixedSizeMatrixConstruction() | 
|  | { | 
|  | Scalar raw[4]; | 
|  | for(int k=0; k<4; ++k) | 
|  | raw[k] = internal::random<Scalar>(); | 
|  |  | 
|  | { | 
|  | Matrix<Scalar,4,1> m(raw); | 
|  | Array<Scalar,4,1> a(raw); | 
|  | for(int k=0; k<4; ++k) VERIFY(m(k) == raw[k]); | 
|  | for(int k=0; k<4; ++k) VERIFY(a(k) == raw[k]); | 
|  | VERIFY_IS_EQUAL(m,(Matrix<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))); | 
|  | VERIFY((a==(Array<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))).all()); | 
|  | } | 
|  | { | 
|  | Matrix<Scalar,3,1> m(raw); | 
|  | Array<Scalar,3,1> a(raw); | 
|  | for(int k=0; k<3; ++k) VERIFY(m(k) == raw[k]); | 
|  | for(int k=0; k<3; ++k) VERIFY(a(k) == raw[k]); | 
|  | VERIFY_IS_EQUAL(m,(Matrix<Scalar,3,1>(raw[0],raw[1],raw[2]))); | 
|  | VERIFY((a==Array<Scalar,3,1>(raw[0],raw[1],raw[2])).all()); | 
|  | } | 
|  | { | 
|  | Matrix<Scalar,2,1> m(raw), m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ); | 
|  | Array<Scalar,2,1> a(raw),  a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ); | 
|  | for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]); | 
|  | for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]); | 
|  | VERIFY_IS_EQUAL(m,(Matrix<Scalar,2,1>(raw[0],raw[1]))); | 
|  | VERIFY((a==Array<Scalar,2,1>(raw[0],raw[1])).all()); | 
|  | for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k])); | 
|  | for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k])); | 
|  | } | 
|  | { | 
|  | Matrix<Scalar,1,2> m(raw), | 
|  | m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ), | 
|  | m3( (int(raw[0])), (int(raw[1])) ), | 
|  | m4( (float(raw[0])), (float(raw[1])) ); | 
|  | Array<Scalar,1,2> a(raw),  a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ); | 
|  | for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]); | 
|  | for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]); | 
|  | VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,2>(raw[0],raw[1]))); | 
|  | VERIFY((a==Array<Scalar,1,2>(raw[0],raw[1])).all()); | 
|  | for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k])); | 
|  | for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k])); | 
|  | for(int k=0; k<2; ++k) VERIFY(m3(k) == int(raw[k])); | 
|  | for(int k=0; k<2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k]))); | 
|  | } | 
|  | { | 
|  | Matrix<Scalar,1,1> m(raw), m1(raw[0]), m2( (DenseIndex(raw[0])) ), m3( (int(raw[0])) ); | 
|  | Array<Scalar,1,1> a(raw), a1(raw[0]), a2( (DenseIndex(raw[0])) ); | 
|  | VERIFY(m(0) == raw[0]); | 
|  | VERIFY(a(0) == raw[0]); | 
|  | VERIFY(m1(0) == raw[0]); | 
|  | VERIFY(a1(0) == raw[0]); | 
|  | VERIFY(m2(0) == DenseIndex(raw[0])); | 
|  | VERIFY(a2(0) == DenseIndex(raw[0])); | 
|  | VERIFY(m3(0) == int(raw[0])); | 
|  | VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,1>(raw[0]))); | 
|  | VERIFY((a==Array<Scalar,1,1>(raw[0])).all()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_basicstuff() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( basicStuff(Matrix4d()) ); | 
|  | CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) ); | 
|  | CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  |  | 
|  | CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>()); | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>()); | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>()); | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>()); | 
|  | CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>()); | 
|  |  | 
|  | CALL_SUBTEST_2(casting()); | 
|  | } |